Aviation Environmental Design Tool (AEDT)
User Guide
Version 2a

U.S. DOT Volpe Center:
Koopmann, Jonathan
Solman, Gina Barberio
Ahearn, Meghan
Hwang, Sunje

U.S. Department of Transportation
Volpe National Transportation Systems Center
55 Broadway
Cambridge, MA 02142

This report is part of the AEDT 2a software release, and it is publicly available.

FAA Program Managers: Ralph Iovinelli, Rebecca Cointin, Fabio Grandi, and Christopher Sequeira

The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation Environmental Design Tool (AEDT) version 2a software system with the support of the following development team: FAA, National Aeronautics and Space Administration (NASA), U.S. DOT Volpe National Transportation Systems Center (Volpe Center), ATAC Corporation, Metron Aviation, Wyle Laboratories, CSSI, Inc., Foliage, MIT, and Georgia Tech. AEDT 2a is designed to dynamically model aircraft performance in space and time to compute aircraft noise, emissions, and fuel burn. AEDT 2a software runs on PCs using a minimum hardware configuration of a Microsoft Windows XP or 7 operating systems, Dual-core w/ 1.6 GHz FSB and 512KB L2 Cache processor, 4 GB RAM, and 500 GB hard disk storage. In the U.S., the model is used to evaluate aircraft noise, emissions, and fuel burn of proposed air traffic airspace actions under the current version of FAA Order 1050.1E. This document is the User Guide to setup and run analyses with AEDT 2a.

14. ABSTRACT

The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation Environmental Design Tool (AEDT) version 2a software system with the support of the following development team: FAA, National Aeronautics and Space Administration (NASA), U.S. DOT Volpe National Transportation Systems Center (Volpe Center), ATAC Corporation, Metron Aviation, Wyle Laboratories, CSSI, Inc., Foliage, MIT, and Georgia Tech. AEDT 2a is designed to dynamically model aircraft performance in space and time to compute aircraft noise, emissions, and fuel burn. AEDT 2a software runs on PCs using a minimum hardware configuration of a Microsoft Windows XP or 7 operating systems, Dual-core w/ 1.6 GHz FSB and 512KB L2 Cache processor, 4 GB RAM, and 500 GB hard disk storage. In the U.S., the model is used to evaluate aircraft noise, emissions, and fuel burn of proposed air traffic airspace actions under the current version of FAA Order 1050.1E. This document is the User Guide to setup and run analyses with AEDT 2a.
Table of Contents

1 INTRODUCTION ... 1

1.1 WHAT IS AEDT? ... 1
1.2 AEDT 2A KEY FEATURES .. 2
1.3 ABOUT THIS USER GUIDE .. 2
1.4 TECHNICAL ASSISTANCE .. 3

2 GETTING STARTED ... 5

2.1 INSTALLATION .. 5
 2.1.1 System Requirements ... 5
 2.1.2 Install Package Contents ... 8
 2.1.3 Software Installation .. 8
 2.1.3.1 Install Microsoft SQL Server 2008 R2 Express .. 9
 2.1.3.2 Install Esri ArcGIS 10.0 Engine Runtime ... 17
 2.1.3.3 Install AEDT ... 23
 2.1.3.4 Run AEDT .. 29
 2.1.4 AEDT File Structure .. 30
 2.1.5 Steps to Uninstall AEDT .. 30
 2.1.5.1 Confirm AEDT Database Removal ... 32
 2.2 OPTIONAL PROCESSING SETUP ... 33
 2.2.1 Distributed Processing Configuration ... 33
 2.2.1.1 Setup AEDT Client ... 35
 2.2.1.2 Setup Remote Taskmaster Servers .. 36
 2.3 SQL DATABASE MANAGEMENT ... 37
 2.3.1 SQL Server Database Back-Up ... 37
 2.3.2 SQL Server Database Restore ... 37
 2.3.3 SQL Server Memory Management ... 39

3 LOAD STUDY ... 40

3.1 LOAD STUDY ... 40
3.2 IMPORT STUDY ... 41
3.3 OPEN EXISTING AEDT STUDY ... 44

4 USER INTERFACE .. 45

4.1 GENERAL NAVIGATION ... 45
4.2 STUDY HIERARCHY ... 46
4.3 TREE BROWSER ... 47
4.4 AIRPORT GEOMETRY AND NAVIGATION BAR ... 48
4.5 INFORMATION BOX .. 49
4.6 MODIFY TREE BROWSER LAYERS IN AIRPORT GEOMETRY 49

5 SETUP ... 53

5.1 SET UP DATA .. 53
 5.1.1 Import Partial ASIF ... 53
5.1.2 Import Population Data ..55
5.1.3 Add GIS Layer ...55
5.1.4 Define Terrain File Path Location ...56
5.1.5 Define Weather File Path Location ..58
5.1.6 Export Aircraft ..60
5.2 SET UP STUDY INFORMATION ...61
5.3 SET UP AIRPORTS ...62
5.3.1 Set Up Airport Layouts ...64
5.4 SET UP SCENARIOS ...66
5.4.1 Set Up or Modify Scenarios ...66
5.5 SET UP CASES ...67
5.5.1 Set Up or Modify Cases ...67
5.5.2 View Aircraft Operations ..68
5.6 SET UP RECEPTORS AND RECEPTOR SETS ..70
5.6.1 Receptors ..69
5.6.2 Receptor Sets ..69
5.7 SET UP NOISE METRICS ...70
5.8 SAVE BACKUP STUDY FILE (GENERATE ADMINISTRATIVE FILE)71
6 VIEW ..76
6.1 ANNUALIZATION ..76
6.2 TRACKS ..79
6.3 STUDY BOUNDARY ...80
6.4 INPUT REPORTS ..82
6.4.1 Study Input Report ...82
6.4.2 Fleet Mix Report ..82
6.4.3 Receptor Set Report ..83
6.5 JOB FLIGHT PERFORMANCE SUMMARY REPORT ...84
6.6 ERROR LOG ...85
7 RUN STUDY ..87
7.1 DEFINE RUN OPTIONS ...87
7.2 RUN WITH DISTRIBUTED PROCESSING ...90
7.2.1 Identify Remote Taskmaster Machines for Distributed Processing90
7.2.2 Enable/Disable Distributed Processing ..91
7.3 CREATE JOB ...92
7.4 RUN JOB ...95
7.4.1 Run Job in the AEDT GUI ...95
7.4.2 Reset Job ..97
7.4.3 Remove Job ...97
8 RESULTS ...98
8.1 FLIGHT PERFORMANCE INFORMATION ...98
8.1.1 View Flight Performance Report ...99
8.1.2 View Flight Performance Map .. 100
8.1.3 View Flight Performance Graph ... 102
8.2 NOISE GRAPH .. 102
8.3 CHANGE ANALYSIS AND IMPACT EVALUATION .. 103
8.3.1 Color Coding ... 103
8.3.2 Impact Set .. 104
 8.3.2.1 Impact Set Reports .. 105
 8.3.2.1.1 Impact Set Graph .. 106
 8.3.2.1.2 Impact Set Table .. 107
8.3.3 Change Analysis ... 108
 8.3.3.1 Change Analysis Results ... 110
8.3.4 Impact Evaluation .. 113
8.4 CONTOURS .. 116
8.5 EMISSIONS ... 119
8.6 NOISE EXPOSURE REPORT ... 122
8.7 CLEAR INVALID RESULTS ... 123
8.8 ACCESS OUTPUT FILES .. 124
9 DELETE STUDY .. 125

APPENDIX A GLOSSARY .. 126
APPENDIX B AEDT 2A SYSTEM STRUCTURE ... 134
APPENDIX C MENU REFERENCE .. 135
APPENDIX D SQL SERVER CONFIGURATION SETTINGS .. 138
APPENDIX E POPULATION IMPORT TOOL .. 142
APPENDIX F TERRAIN ... 146
APPENDIX G WEATHER .. 150
APPENDIX H REPORTS .. 158
APPENDIX I ANNUAL SCHEDULE ... 158
APPENDIX J ADVANCED USER TOOLS ... 163
APPENDIX K AEDT-NIRS GUIDANCE .. 171
1 Introduction

1.1 What is AEDT?

Overview
The Federal Aviation Administration Office of Environment and Energy (FAA-AEE) recognizes that the environmental consequences stemming from the operation of commercial aviation – primarily noise, emissions, and fuel burn – are highly interdependent and occur simultaneously throughout all phases of flight. The Aviation Environmental Design Tool (AEDT) is a software system that is designed to dynamically model aircraft performance in space and time to compute fuel burn, emissions, and noise. Full flight gate-to-gate analyses are possible for study sizes ranging from a single flight at an airport to scenarios at the regional, national, and global levels\(^1\). For a Glossary of terms, see Appendix A.

AEDT 2a is the first step in the next generation aviation environmental consequence tool, replacing the Noise Integrated Routing System (NIRS) as the official FAA compliance tool for modeling aircraft noise, emissions, and fuel burn for air traffic airspace and procedural actions. Upon release of the full AEDT 2b version, AEDT will also replace the current public-use aviation air quality and noise analysis tools such as the Integrated Noise Model (INM – single airport noise analysis) and the Emissions and Dispersion Modeling System (EDMS – single airport emissions analysis).

Software Characteristics
AEDT is built on the Microsoft .NET Framework and is capable of running on Windows XP Professional, Windows 7, and Windows Server operating systems. It is supported by extensive system databases covering airports, airspace, and fleet information that span the global nature of the aviation industry. AEDT is designed to be a data-driven model that is fully scalable, from a single operation at a specific airport to a full global inventory and everywhere in between, provided that the user provides the necessary input data\(^1\).

All information is rendered in a geo-spatial nature given the Esri-based core of the tool, which supports the compatibility with other geo-spatial applications. State-of-the-art software technology is used to enhance the capabilities of AEDT, such as the XML-based AEDT Standard Input File (ASIF) that allows for the input of large datasets of 4D trajectories, fleet information, and event assignments.

AEDT outputs include reports, graphs, and tables that describe the fleet mix, receptor sets, flight performance, noise, contours, fuel burn, and local air quality and greenhouse gas emissions. See Appendix B for a diagram of the AEDT 2a system structure.

Users
AEDT is currently used by the U.S. government for domestic planning and research analyses and in support of work within the International Civil Aviation Organization (ICAO) Committee on Aviation Environmental Protection (CAEP). It is anticipated that the public release version of AEDT will have the same wide range of global users as the existing legacy tools on which AEDT is based, including domestic

\(^1\) Not all functionality is available in the AEDT 2a release.
1 Introduction

Aviation Environmental Design Tool

User Guide: 2a

and international regulatory bodies, airports, consultants, academia, environmental organizations, industry organizations, as well as airframe and engine manufacturers.

Availability

U.S. government use of AEDT is through the FAA-AEE. AEDT 2a is the public use version. It is the official FAA compliance tool for modeling aircraft noise, emissions, and fuel burn for air traffic airspace and procedural actions in the United States.

Developers

The AEDT Development Team consists of: the FAA, National Aeronautics and Space Administration (NASA), U.S. Department of Transportation John A. Volpe National Transportation Systems Center, the ATAC Corp., CSSI Inc., Metron Aviation, Wyle Laboratories, Foliage, Georgia Institute of Technology, and Massachusetts Institute of Technology.

1.2 AEDT 2a Key Features

Key features of AEDT 2a are listed below.

- Change Analysis and Impact Evaluation: Noise change analysis and impact evaluation for airspace redesign and procedural changes.
- Partial ASIF Import: Supports adding elements to an existing study incrementally.
- Weather Processing: Users can model the results of high fidelity, average, or user defined airport weather conditions.
- Population Import Tool: Supports importing population data into AEDT 2a, based on geographic boundaries.
- Distributed Processing: AEDT 2a provides the ability to run jobs across a number of remote servers to reduce processing time.
- Helicopter Modeling: AEDT 2a uses the same helicopter modeling methods and data utilized by both INM version 7.0c and NIRS version 7.0b. These are enhanced versions of the helicopter modeling methods and data contained in version 2.2 of the FAA’s Heliport Noise Model (HNM). Enhancements relative to HNM include additional helicopter data, provisions for more types of noise directivity data, and more unique helicopter operational modes which are tied to both noise-power-distance (NPD) data sets and helicopter flight path calculations. Helicopter functionality is set up in the ASIF. Helipad latitude, longitude, and altitude must be input by the user in the ASIF, see the ASIF Reference Guide for more detailed information on the ASIF. AEDT 2a does not support helicopter modeling with user defined profiles, population receptors, sensor path data, or for overflight operations.

1.3 About This User Guide

This User Guide for AEDT 2a Service Pack 2 (SP2) provides step-by-step instructions on how to use AEDT 2a to model aircraft noise, emissions, and fuel burn. For information on changes made in SP2, see the README file located in C:\AEDT\AEDT_Workspaces\Documents.

The organization of this User Guide is based on a typical AEDT 2a work flow. To navigate this User Guide by menu item, see Appendix C.
Screenshots are provided throughout this User Guide. Screenshots were taken in a Windows 7 environment, and some images may look different in Windows XP. Clicking on help buttons in AEDT dialog boxes will open this AEDT User Guide in the appropriate section.

Throughout this document, information may be highlighted to make it easier to find solutions to problems or to avoid errors using the following prompts:

- **Warnings** must be observed to avoid errors in execution or to ensure that the intended execution will occur.
- **Notes** contain important information or tips regarding the functionality of the tool.
- **Questions** provide answers to common questions about the tool.
- **Certain features are optional for some study types, but are required for other study types. Features that may be optional are marked with this icon.**
- **Features specific to emissions are marked with this icon.**
- **Features specific to noise are marked with this icon.**

1.4 Technical Assistance
For technical support:
- Visit the AEDT Support website: https://aedt.faa.gov/;
- E-mail: aedt-support@dot.gov; or
- Call: 617-494-2603

The AEDT Support website is the hub for all software updates, feedback, and assistance for registered users. Register on the website using the site license number provided with the purchase of AEDT.

Error files and log files are located in the following places and may be helpful when contacting technical assistance:
- System error messages are written to the Event Viewer.
 - In Windows XP, open Event Viewer by navigating to the Start menu, Control Panel, Administrative Tools, Event Viewer.
 - In Windows 7, open Event Viewer by navigating to the Start menu, Control Panel, System and Security, Administrative Tools, Event Viewer (Figure 1-1).
- AEDT application and ASIF importer error messages are written to a log file located at C:\AEDT\AEDT_Workspaces\Output_files\AEDT_Log.txt. This log can be viewed in the AEDT graphical user interface (GUI), see Section 6.6 for more information.
Do not change the AEDT default directory file structure or default error log locations.

Figure 1-1 Event Viewer in Windows 7
2 Getting Started

2.1 Installation

2.1.1 System Requirements

System specifications for computers capable of hosting the AEDT application are displayed in Table 2-1. The recommended specifications are listed with suggested minimums where applicable. Through the use of SQL Server connectivity, it is possible to connect multiple computational clients to one central database server.

Table 2-1 AEDT System Requirements

<table>
<thead>
<tr>
<th>AEDT System Specifications</th>
<th>Minimum</th>
<th>Preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Systems</td>
<td>Microsoft Windows XP (x86 or x64) or Microsoft Windows 7 x86-based Systems</td>
<td>Microsoft Windows 7 x64-based Systems^2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microsoft Windows Server 2008 R2</td>
</tr>
<tr>
<td>Processor</td>
<td>Modern dual core processor with 2 GHz or higher clock</td>
<td>Modern many core (>2) processors with 2 GHz or higher clock</td>
</tr>
<tr>
<td>RAM</td>
<td>4 GB Memory for 32-bit operating systems</td>
<td>64 GB Memory for 64-bit operating systems</td>
</tr>
<tr>
<td>Hard-disk Space</td>
<td>500 GB Storage</td>
<td>2 TB Storage RAID</td>
</tr>
<tr>
<td>SQL Requirements</td>
<td>Microsoft SQL Server 2008 R2 (x86 or x64) or Microsoft SQL Server 2008 R2 Express (x86 or x64)</td>
<td>Microsoft SQL Server 2008 R2 (x64)</td>
</tr>
<tr>
<td>Software Requirements</td>
<td>• ArcGIS Engine Runtime v10.0: Included in AEDT installation package
• MS Chart: Included in AEDT installation package
• Adobe Reader X (v10) or higher
• XML Editor: Free download available online, for example MS XML Notepad 2007 or Notepad++</td>
<td>• ArcGIS Engine Runtime v10.0: Included in AEDT installation package
• MS Chart: Included in AEDT installation package
• Adobe Reader X (v10) or higher
• XML Editor: Free download available online, for example MS XML Notepad 2007 or Notepad++</td>
</tr>
</tbody>
</table>

^2 Microsoft Windows 7 for x64-based Systems is the preferred operating system for AEDT 2a. Use Microsoft Update to ensure your computer has the latest priority updates. Visit www.update.microsoft.com.
In AEDT 2a, only “English (United States)” is supported for date and time format, localization (system locale), and operating systems.

Where can system specification be found?

- Windows XP
 - Navigate to Start menu, Control Panel, System. The General tab displays the operating system version, processor, and RAM (Figure 2-1). For a 32-bit version OS, it displays Windows XP Professional Version <Year>. For a 64-bit version OS, it displays Windows XP Professional x64 Version <Year>.
 - To check the hard-disk space, right-click on the C drive and select Properties. The General tab displays the capacity of the disk including used and free space.

- Windows 7
 - Navigate to Start menu, Control Panel, System and Security, System. It displays the operating system version, processor, installed memory (RAM), and system type information (Figure 2-2).
 - To check the hard-disk space, right-click on the C drive and select Properties. The General tab displays the capacity of the hard-disk including used and free space.

![Figure 2-1 System Properties – Windows XP](image-url)
Where can installed software be viewed?

- Windows XP
 - Navigate to Start menu, Control Panel, and select Add or Remove Programs.
 - Check whether the ArcGIS Engine Runtime 10 and ArcGIS_Installer_v10 appear in the list of installed programs.
 - Check whether the Microsoft SQL Server 2008 R2 appears in the list of installed programs.

- Windows 7
 - Navigate to Start menu, Control Panel, Programs, and select Uninstall a program.
 - Check whether the ArcGIS Engine Runtime 10 and ArcGIS_Installer_v10 appear in the list of installed programs.
 - Check whether the Microsoft SQL Server 2008 R2 appears in the list of installed programs.
2.1.2 Install Package Contents

Please contact aedt-support@dot.gov to obtain the AEDT 2a installation package. The AEDT 2a installation package contains the AEDT 2a software, including additional software listed below:

Required Software

1. **SQL_Server_2008_R2_Express_x64.exe** – Installer for Microsoft SQL Server 2008 R2 Express and SQL Server Management Studio for 64-bit operating system
2. **SQL_Server_2008_R2_Express_x86.exe** – Installer for Microsoft SQL Server 2008 R2 Express and SQL Server Management Studio for 32-bit operating system
3. **ESRI_ArcGIS_Installer_v10.zip** – Installer for ArcGIS Engine Runtime 10 with Spatial Analyst extension and for ArcGIS Engine Runtime 10, Service Pack 1
4. **MSChart.exe** – Microsoft Chart installer

AEDT Software

1. **AEDT_2A_SP2_Installer.zip** – Installer for AEDT 2a
2. **AEDT_2A_SP2_Distributed_Installer.zip** – This is only for servers utilizing Distributed Processing (see Section 2.2)
4. **AEDT_ASIFRefGuide.pdf** – AEDT 2a ASIF Reference Guide

Optional Tools

1. **INM_to_ASIF_Converter_User_Guide.docx** – User Guide for the INM to ASIF converter tool
2. **INMASIFConverter.zip** – Installer for INM to ASIF converter tool
3. **NIRS_to_ASIF_Converter_User_Guide.docx** – User Guide for the NIRS to ASIF converter tool
4. **NIRS2ASIF.zip** – Installer for NIRS to ASIF converter tool

2.1.3 Software Installation

This section provides detailed steps on how to install and run AEDT. It is important to follow the installation instructions in the order listed, as Microsoft SQL is a prerequisite for AEDT:

1. Install Microsoft SQL Server 2008 R2 Express
2. Install Esri ArcGIS 10.0 Engine Runtime
3. Install AEDT

Installation components must run locally.

⚠️ To install software, the user must have administrative rights to the computer.

To check if the user has administrative rights to the computer:

1. Navigate to Start menu, Administrative Tools, Computer Management.
2. Expand Local Users and Groups, and select the Groups folder.
3. Double-click on Administrators. The name of the user should be listed (the steps may be different in a Windows XP environment).
Do not change the AEDT default directory file structure or default folder names provided in the installation.

If the user has a pre-existing version of the AEDT software (e.g. Alpha, Beta 1a, Beta 1b, or Beta 1c installation), it will need to be uninstalled from the system before installing AEDT 2a. The user will not be able to run prior versions with the AEDT 2a version on the same machine. Please consider installing the AEDT 2a version on a different machine for a clean installation. See Section 2.1.5 on uninstalling AEDT.

Check that all AEDT file directories or existing SQL database files (.BAK) that were supplied with prior versions are removed from the system before proceeding with the AEDT 2a installation. See the end of Section 2.1.5.

2.1.3.1 Install Microsoft SQL Server 2008 R2 Express

The user must have Microsoft SQL Server 2008 R2 (x86 or x64) or Microsoft SQL Server 2008 R2 Express (x86 or x64) installed prior to installing AEDT 2a. See Section 2.1.1 for system requirements. Microsoft SQL Server 2008 R2 Express (x86 or x64) is included in the AEDT 2a installation package (see Section 2.1.2). Instructions on installing the SQL Server 2008 R2 Express Edition are described below. The instructions assume that the user does not have a Microsoft SQL Server product on the computer already.

Microsoft SQL Server Management Studio is also installed as part of the installation. SQL Server Management Studio is a graphical management tool that allows users to configure and manage Microsoft SQL Server, including backing up and restoring databases and running SQL queries.

To install Microsoft SQL Server 2008 R2 Express Edition:
1. There are two installers for Microsoft SQL Server 2008 R2 Express.
 - For computers with 32-bit operating systems, use the SQL Server 2008 R2 Express x86.exe.
 - For computers with 64-bit operating systems, use the SQL Server 2008 R2 Express x64.exe.
2. Double-click on the appropriate executable.
3. Click Run when prompted to Run or Cancel.
4. The SQL Server Installation Center window will automatically launch when the files have finished extracting.
5. Click the Installation link on the left side of the window.
6. Click the appropriate installation option. Click the New installation or add features to an existing installation option unless upgrading from an older version. See Figure 2-3 below.
7. SQL Server 2008 R2 Setup will automatically run Setup Support Rules which will identify potential installation issues.

8. License Terms: Read the terms and check the box that reads I accept the license terms. Click the Next button.

9. SQL Server 2008 R2 Setup will automatically run Setup Support Files.
10. **Feature Selection:** Select the following features: *Database Engine Services and Management Tools - Basic* (Figure 2-4). Click the *Next* button.

![Figure 2-4 SQL Server 2008 R2 Setup – Feature Selection](image-url)
11. *Instance Configuration*: Accept the default settings and click the *Next* button.

![Figure 2-5 SQL Server 2008 R2 Setup – Instance Configuration](image)
12. **Server Configuration**: For the *SQL Server Database Engine* service, select *NT AUTHORITY\SYSTEM* in the *Account Name* field. Select *Automatic* in the *Startup Type* drop-down menu (Figure 2-6). Click the *Next* button.

When possible, use the same system or local account to configure the services. Network accounts can be used when NT authentication is required to establish a “back-end” SQL Server configuration.

![Figure 2-6 SQL Server 2008 R2 Setup – Server Configuration](image)
13. **Database Engine Configuration**: Select the *Mixed Mode* radio button. Enter a password that is at least 10 characters long. Click the *Add Current User* button (Figure 2-7). Click the *Next* button.

![Figure 2-7 SQL Server 2008 R2 Setup – Database Engine Configuration](image-url)
14. **Error Reporting:** It is not necessary to select any of the options. Click the *Next* button. **Installation Progress:** The progress bar and status will update until the installation is complete (Figure 2-8).

![Figure 2-8 SQL Server 2008 R2 Setup – Installation Progress](image)
15. **Complete:** The final screen will confirm that the installation was successful (Figure 2-9). Click the *Close* button to close the *Setup* window.

![Figure 2-9 SQL Server 2008 R2 Setup – Complete](image)

16. If prompted to restart the computer, click *OK*.
17. Close the *SQL Server Installation Center* window by clicking the *X* in the top right corner.
2.1.3.2 Install Esri ArcGIS 10.0 Engine Runtime

Skip this section if the ArcGIS 10.0 Engine Runtime was previously installed; FAA AEE Design Review Group members, see instructions below.

If an older or newer version of the Esri software (e.g. 9.3.1, 10.1) exists on the machine or ArcGIS 10.0 exists but without the Spatial Analyst Extension, and should be retained, then install on another machine.

FAA AEE Design Review Group members who procured Esri ArcGIS 10.0 Engine Runtime through previous AEDT installers should uninstall the Esri ArcGIS software and install the new Esri ArcGIS Runtime software, ESRI_ArcGIS_Installer_v10, see section 2.1.2. Follow the uninstallation instructions provided below.

The Installer for the Esri ArcGIS 10.0 Engine Runtime is included in the AEDT 2a installation package (see Section 2.1.2). Installation instructions are described below.

It is required to uninstall any prior versions for Esri ArcGIS Engine Runtime (e.g. 9.3.1) before installing Esri ArcGIS 10.0 Engine Runtime.

The following instructions are written for Windows 7, steps may be different in Windows XP.

To uninstall Esri ArcGIS Engine Runtime:
1. Navigate to Start menu, Control Panel, and select Uninstall a program (Windows 7).
2. Uninstall the following two programs – ArcGIS Engine Runtime and ArcGIS Installer.
 a. First, remove the ArcGIS Engine Runtime. A confirmation message will be displayed if uninstallation is successful.
 b. Remove the ArcGIS Installer. Restart the system if the installer prompts for a restart.
3. Verify that both programs have been completely removed from the installed program list before moving on to the next step.
4. Delete any residual files in the following directory C:\Program Files\ArcGIS or C:\Program Files (x86)\ArcGIS that may remain on the system.
5. Check if the following directory exists – C:\ProgramData\FLEXnet
 This directory may be hidden. In order to show hidden folders:
 a. Open the Folder Options by navigating to Start menu, Control Panel, Appearance and Personalization, Folder Options.
 b. Click on View tab (Figure 2-10).
 c. Select Show hidden files, folders, and drives option, then click OK.
6. Delete any files that begin with ARCGIS in the directory (C:\ProgramData\FLEXnet).

To install Esri ArcGIS Engine Runtime 10 and Service Pack 1:
2. To start the installer, double-click the setup.exe file.
3. The ArcGIS Setup Wizard will open (Figure 2-11). Click Next.
4. Select the installation folder – accept the default location (Figure 2-12).

![Figure 2-12 ArcGIS Setup Wizard – Select Installation Folder](image)

5. Click Next to start the installation (Figure 2-13).

![Figure 2-13 ArcGIS Setup Wizard – Confirm Installation](image)

6. The installation progress will be displayed. Once the installation is complete, click Close to exit the Setup Wizard (Figure 2-14).
7. The Esri installation requires a system restart to complete the installation process. Close open programs before restarting the computer. Click Yes to restart (Figure 2-15).

8. Log back into the computer as administrator. The Esri installation will continue after the system restart (Figure 2-16). Do not change the computer name that is displayed. Click OK to start ArcGIS Engine Runtime 10.0 and Service Pack 1 installation.
If the Esri installation does not automatically continue after the system restart (Figure 2-16 does not appear after restart), navigate to the C:\ESRI_Setup directory and double-click on \RunArcGISInstall.vbs.

If prompted to choose the use account to run the program, select Current user. If the Protect my computer and data from unauthorized program activity box is checked, uncheck it and click OK.

9. The installation progress will be displayed. Once the installation and key authorization are complete, the following confirmation message will be displayed (Figure 2-17). Click OK to close the message.

![ArcGIS Engine Runtime – Installation Complete](image)

If an error related to FAA.AEE.AEDT.GIS.AuthroizeASR.exe occurs, see error message below, navigate to the C:\ESRI_Setup directory and right-click on ArcGIS_AuthorizeEngine.bat. Select the Run as administrator or Run Elevated option. The confirmation message, shown below, will appear if the Esri license registration was successful.

![Esri Registration Utility](image)

Follow the instructions below to verify the ArcGIS Runtime Engine configuration once the installation is complete:

1. Open the ArcGIS Administrator Wizard by navigating to Start menu, All Programs, ArcGIS, ArcGIS Administrator.
2. In the *ArcGIS Administrator* window, verify the installation information and software versions (Figure 2-18). Verify that the service pack build is 10.0.1.2800.

![Figure 2-18 ArcGIS Administrator – Configuration Information](image)

3. Select the *Availability* folder in the left window pane. Verify the authorization status and expiration dates for the following software (Figure 2-19).
 - ArcGIS Engine Runtime: Authorized=Yes; Expires=30-Sep-2014
 - Geodatabase Update: Authorized=Yes; Expires=30-Sep-2014
 - Spatial Analyst: Authorized=Yes; Expires=30-Sep-2014

![Figure 2-19 ArcGIS Administrator – Availability](image)
If the Esri installation is not completed to include the license key configuration, the AEDT application will fail on startup due to invalid Esri license information.

2.1.3.3 Install AEDT

The AEDT application installation package, AEDT_2A_SP2_Installer.zip, consists of a pair of files. The launch application wizard is called setup.exe, and FAA_AEE_AEDT_2A_Installer.msi contains the software, databases, and registration information for the application. This package is a standard windows format for software installations.

Microsoft SQL Server 2008 R2 must be installed prior to installing AEDT; otherwise the following error will occur during AEDT installation: Error 1001. Object reference not set to an instance of an object.

AEDT Setup will install Windows Installer 4.5 and Microsoft .NET Framework 4 if they are not already installed on the computer.

To install AEDT:
1. Uninstall (see Section 2.1.5) any prior versions of AEDT before starting the installation.
2. Extract the AEDT_2A_SP2_Installer.zip file. Note the AEDT setup.exe file is different from the Esri setup.exe file. Copy the AEDT installation files to a different folder than the Esri installation files.
3. To start the installer, double-click the setup.exe file.
4. The AEDT Setup Wizard will open (Figure 2-20). Click Next.

![Figure 2-20 AEDT Setup Wizard – Welcome](image)
5. License Agreement – Read the license agreement and select *I agree* (Figure 2-21). Click *Next*.

![Image of License Agreement dialog box](image)

Figure 2-21 AEDT Setup Wizard – License Agreement

6. Select installation folder – accept the default location `C:\AEDT\` (Figure 2-22).

7. Select the desired installation option – whether an application is installed for all users of a computer (*Everyone*) or only for the user performing the installation (*Just me*). Click *Next*.

![Image of Select Installation Folder dialog box](image)

Figure 2-22 AEDT Setup Wizard – Select Installation Folder
8. Click Next to start the installation (Figure 2-23).

9. AEDT Setup Wizard will look for SQL Servers and display the SQL Server Database Chooser (Figure 2-24). Select a desired SQL Server Database from the drop-down menu. Click OK.

10. Click Yes when prompted to install the databases (Figure 2-25).
11. The AEDT database installation progress will be displayed (Figure 2-26). No action is required.

![Figure 2-26 AEDT Setup Wizard – SQL Server Database Installation Progress](image)

12. When the SQL Server database installation is complete, the Database Installation Results will be displayed as below. The AEDT system databases, version numbers, and configuration file updates will be shown. Click OK.

![Figure 2-27 AEDT Setup Wizard – Database Installation Results](image)
13. Click Close to exit the installation (Figure 2-28).

Figure 2-28 AEDT Setup Wizard – Installation Complete

AEDT System Databases

The following AEDT system databases are installed as part of the AEDT installation:

- **AIRPORT**: Contains a global set of airports using standard FAA and International Air Transport Association (IATA) codes.
- **FLEET**: Contains all the available aircraft models.
- **STUDY**: Baseline schema for creating and importing new studies.
- **STUDY_NIRS**: Sample study – Chicago regional.
 - This sample study was developed in 1995 and reflects the current runway configuration of the time.
- **STUDY_INM**: Sample study – San Francisco.
- **STUDY_ROOT**: Configuration settings for existing studies.

To install AEDT databases on a remote SQL Server:

1. Follow the steps (1-13) above to first install AEDT on a client machine.
2. Determine on which database server the AEDT databases will be located. The database server must contain one of the supported Microsoft SQL Server versions. See Section 2.1.1 for supported versions. It is possible to separate locations of AEDT databases on different servers.
3. Copy all files under C:\AEDT\AEDT_DB on the AEDT client machine to a remote SQL Server.
4. On the remote SQL Server, copy all .bak files to the SQL Server Backup directory: C:\Program Files\Microsoft SQL Server\MSSQL10_50.MSSQLSERVER\MSSQL\Backup or C:\Program Files\Microsoft SQL Server\MSSQL10_50.SQLEXPRESS\MSSQL\Backup
5. On the remote SQL Server, open SQL Server Management Studio from the Start menu, All Programs, Microsoft SQL Server 2008 R2, SQL Server Management Studio
6. On the remote SQL Server, run the following script in SQL Server Management Studio:
 C:\AEDT\AEDT_DB\Create_DBs_LoadData.sql
7. On the AEDT client machine, navigate to and open the configuration file, C:\AEDT\FAA.AEE.AEDT.AEDTApp.exe.config
8. Locate the selection displayed in Figure 2-40:
 - Replace [SQL Server Name] with the appropriate SQL Server instance name containing the AEDT databases.
 - If databases are located on different servers, each database location must be specified separately.

For instructions on identifying SQL Server instance names, see Appendix D.

```xml
<connectionStrings>
  <add name="FLEETConnectionString"
       connectionString="Data Source=[SQL Server Name];Initial Catalog=FLEET; Integrated Security=True"
       providerName="System.Data.SqlClient"/>
  <add name="AIRPORTConnectionString"
       connectionString="Data Source=[SQL Server Name];Initial Catalog=AIRPORT;Integrated Security=True"
       providerName="System.Data.SqlClient"/>
  <add name="FAA.AEE.AEDT.DataAccessModule.Properties.Settings.AEDT_LOCAL_STUDYConnectionString"
       connectionString="Data Source=[SQL Server Name];Initial Catalog=STUDY_ROOT;Integrated Security=True"
       providerName="System.Data.SqlClient"/>
  <add name="FAA.AEE.AEDT.DataAccessModule.Properties.Settings.AEDT_STUDY_ROOTConnectionString"
       connectionString="Data Source=[SQL Server Name];Initial Catalog=STUDY_ROOT;Integrated Security=True"
       providerName="System.Data.SqlClient"/>
  <add name="FAA.AEE.AEDT.DataAccessModule.Properties.Settings.RESULTSConnectionString"
       connectionString="Data Source=[SQL Server Name];Initial Catalog=STUDY_ROOT;Integrated Security=True"
       providerName="System.Data.SqlClient"/>
  <add name="FAA.AEE.AEDT.DataAccessModule.Properties.Settings.AIFConnectionString"
       connectionString="Data Source=[SQL Server Name];Initial Catalog=STUDY;Integrated Security=True"
       providerName="System.Data.SqlClient"/>
</connectionStrings>
```

Figure 2-29 FAA.AEE.AEDT.AEDTApp.exe.config File—Database Locations
2.1.3.4 Run AEDT

Before starting AEDT for the first time, check the settings of your Distributed Transaction Coordinator (DTC) Service. The DTC provides services designed to ensure successful and complete transactions, even with system failures, process failures, and communication failures. To check DTC settings on your computer:

1. Navigate to Start menu, Control Panel, Administrative Tools, Services.
2. Find the service, Distributed Transaction Coordinator, and double-click on it. If the Startup type is set to Manual, change it to Automatic.
3. Click the Log On tab. The “Log on as” should be set to Network Service. To change to Network Service, select the “This account” option, then click Browse.
4. In the "Enter the object name to select" field, enter "Network Service", then click OK.
5. Restart the service.

Before running AEDT for the first time (or if the SQL Server instance name or workstation name changes), the user should confirm the SQL server database connection strings in the AEDT configuration file. To check the configuration settings, see Appendix D.

To run AEDT:

Double-click the AEDT icon on your desktop.

Saving a study is necessary in order to commit any changes to the study database. Clicking OK or Apply in dialog boxes does not save changes to the study database. It is recommended to save the study periodically. From the menu bar select File, Save.

Users who have Microsoft SQL Server 2008 rather than SQL Express may encounter the following message when starting AEDT (Figure 2-30). To correct this error message, complete the steps in Appendix D.

Figure 2-30 Error Message for Microsoft SQL Server 2008
2.1.4 AEDT File Structure
The AEDT installation package will create a new root directory \AEDT and install all software, supplemental files, and databases within that directory. Figure 2-31 shows a snapshot of the AEDT folder structure.

![AEDT Directory](image)

Figure 2-31 AEDT Directory

2.1.5 Steps to Uninstall AEDT

⚠️ Close out of all applications on the computer before uninstalling.

To uninstall AEDT:
1. Navigate to Start menu, Control Panel, and select Uninstall a program (The steps may be different in a Windows XP environment).
2. Select AEDT from the program list and click Uninstall.
3. A dialog box will open to confirm the uninstallation of AEDT. Click Yes to confirm (Figure 2-32).
4. A dialog box will appear with the configuration status. It will remain open until the uninstallation is complete (Figure 2-33).

5. A dialog box will open to confirm the removal of the AEDT Databases. Click Yes to uninstall (Figure 2-34).

6. A dialog box will open to confirm the removal of the STUDY_ROOT database. Click Yes to uninstall (Figure 2-35).
7. A dialog box will open as shown in Figure 2-36 below. No action is required.

![Figure 2-36 Progress Window](image)

8. The status bar will display an estimated time to finish removing the programs. Once the installation is complete, the window will close (Figure 2-37).

![Figure 2-37 Complete Status](image)

2.1.5.1 Confirm AEDT Database Removal

To confirm that the uninstall process was successful and removed all AEDT software and databases:

1. Open SQL Server Management Studio from the Start menu, All Programs, Microsoft SQL Server 2008 R2, SQL Server Management Studio.
2. In the Connect to Server dialog box, enter or select the appropriate SQL Server instance name then click the Connect button.
3. In the Object Explorer, expand (double-click) the Databases folder.
4. If SQL Server Management Studio still lists databases with the prefix Study that were installed with the original install of AEDT (non-user-created studies), then right-click the Databases folder and select Refresh.
5. If any of the following databases are still listed in the Databases folder, then right-click on each database and select Delete: AIRPORT, FLEET, STUDY, STUDY_NIRS, STUDY_INM, or STUDY_ROOT.
7. Delete the SQL Server back-up files (.BAK) that are supplied in prior AEDT releases.
 - Perform a search for .BAK to uncover any backup files from prior versions.
• Navigate to the SQL Server installation directory and delete any .BAK files that may exist (e.g. C:\Program Files\Microsoft SQL Server\MSSQL10_50.SQLEXPRESS\MSSQL\Backup or C:\Program Files\Microsoft SQL Server\MSSQL10_50.MSSQLSERVER\MSMQL\Backup).

8. Remove the root AEDT directory (C:\AEDT) and its subfolders if any remain.

2.2 Optional Processing Setup

2.2.1 Distributed Processing Configuration

AEDT 2a uses distributed computing to provide the ability to run jobs across a number of remote servers to reduce processing time. A distributed processing system is a collection of computers that communicate through a computer network. In AEDT 2a, up to one hundred remote servers running Taskmaster (TM) service can be networked to a single AEDT client computer running AEDT. The AEDT GUI need only be installed on the AEDT client. On the remote servers a set of standard DLLs need to be installed. If a study references terrain and/or weather files, the necessary files must be placed on all remote servers in the same location specified in the File Paths dialog box on AEDT client. The specified file location must be exactly the same for all remote servers.

Each remote server receives a batch of flight operation information from the AEDT client, processes it, returns the resulting data, and awaits the next batch. The AEDT client assigns batches to the remote servers sequentially, as each remote server becomes available.

AEDT databases can reside on the AEDT client (see Figure 2-38 where S1, S2, S3, S4, S5, and S6 represent remote servers), or to reduce memory consumption on the AEDT client due to SQL server processing, the databases can reside on a separate database server (see Figure 2-39, where S1, S2, S3, S4, S5, and S6 represent remote servers). In the latter case, the AEDT client relays all necessary information to the remote servers. The remote servers do not communicate directly with the separate database server.
Figure 2-38 Distributed Processing

Figure 2-39 Distributed Processing with Separate Database Server
2.2.1.1 Setup AEDT Client

Install AEDT

1. Install the entire AEDT system following AEDT 2a installation procedures on the AEDT client, including Microsoft SQL Server, Esri ArcGIS runtime, AEDT 2a, and AEDT databases (unless located on a separate database server). See Section 2.1.3.
2. Verify that the AEDT client can run a study successfully. This is an important verification step. If AEDT is not operational on a single machine, AEDT will not operate in distributed processing mode.

Edit AEDT Database Locations in Configuration File

1. Determine on which computer AEDT databases will be located, e.g. AEDT client or a separate database server. The database server must contain one of the supported Microsoft SQL Server versions. See Section 2.1.1 for supported versions. It is possible to separate the four AEDT database locations.
 - **FLEET**: Contains all the available aircraft models.
 - **AIRPORT**: Contains a global set of airports using standard FAA and IATA codes.
 - **STUDY_ROOT**: Configuration settings for existing studies.
 - **STUDY**: Baseline schema for creating and importing new studies.
2. Navigate to and open the configuration file, C:\AEDT\FAA.AEE.AEDT.AEDTApp.exe.config.
3. Locate the selection displayed in Figure 2-40:
 - If all databases are located on the AEDT client, replace every occurrence of [SQL Server Name] shown in Figure 2-40 with the AEDT client SQL server instance name.
 - If all databases are located on a separate database server, replace every occurrence of [SQL Server Name] shown in Figure 2-40 with the SQL server instance name containing the databases.
 - If databases are located on different servers, each database location must be specified separately. Replace [SQL Server Name] with the appropriate SQL server instance name corresponding to the location of each database, e.g., FLEET, AIRPORT, STUDY_ROOT, STUDY, and STUDY_NIRS.

For instructions on identifying SQL Server instance names, see Appendix D.
2.2.1.2 Setup Remote Taskmaster Servers

Repeat the following instructions for each remote server that is being utilized for distributed processing.

1. Confirm that the .NET Framework 4.0 or greater is present on the remote server by navigating to C:\WINDOWS\Microsoft.NET\Framework and confirming the folder named v4.0 exists.

2. Install Esri ArcGIS 10.0 Engine Runtime on the remote server. See Section 2.1.3.2 for installation instructions.

3. Install the TmService environment on the remote server.
 a. All of the files in the AEDT Distributed Installation Package (AEDT_2A_SP2_Distributed_Installer.zip) must be in the same relative location (drive name and directory path name) on all of the remote servers. The remote servers must also have the directory \AEDT\AEDT_Workspaces\Output_files located in the same relative location (drive name and directory path name) as on the AEDT client to accept AEDT_Log.txt files.
 b. Navigate to the AEDT Distributed Installation Package and double-click the executable, setup.exe.
 c. The Setup Wizard will open. Follow the onscreen instructions to install the TM Service.

4. Add a system environment variable on the remote server.
 b. Click Advanced System Settings in the left-hand panel to open the System Properties dialog box.
 c. In the Advanced tab, click Environment Variables to open the Environment Variables dialog box.
 d. Under the System variables list, click New.
 e. In the Variable name field, enter “AEDTPATH”.
 f. In the Variable value field, enter “C:\AEDT”.
 g. Click OK to close the dialog boxes.

5. Restart the TM Service.
b. Double-click on Services to open the Services dialog box.
c. Select the TmService and click Restart.
d. Close the Services dialog box.

6. Restart the remote server.

TmService must be installed on all TM remote servers before attempting to run a job using distributed processing.

2.3 SQL Database Management

2.3.1 SQL Server Database Back-Up

1. Open SQL Server Management Studio from the Start menu, All Programs, Microsoft SQL Server 2008 R2, SQL Server Management Studio.
2. In the Connect to Server dialog box, enter or select the appropriate SQL Server instance name then click the Connect button.
3. In the Object Explorer, select the study database of interest.
4. Right-click on the database, and select Tasks, Back Up… to open the Back Up Database dialog box.
5. Verify that the Backup type is set to Full.
6. If an entry has already been added to the Destination field, select the entry and click the Remove button.
7. Click the Add button to open the Select Backup Destination dialog box (Figure 2-41).

![Select Backup Destination](image)

Figure 2-41 Select Backup Destination

8. Click the … button and browse to the desired location for storing the backup file.
9. Enter the desired file name in the File Name field, including the .bak extension. Click OK.
10. Click OK to close the Select Backup Destination dialog box.
11. Click OK to back up the database. A confirmation message will be displayed if the backup was successful.

2.3.2 SQL Server Database Restore

1. Open SQL Server Management Studio from the Start menu, All Programs, Microsoft SQL Server 2008 R2, SQL Server Management Studio.
2. In the Connect to Server dialog box, enter or select the appropriate SQL Server instance name then click the Connect button.
3. In the Object Explorer, select the database of interest.
4. Right-click on the database, and select Tasks, Restore, Database... to open the Restore Database dialog box.
5. Select the From device radio button, then click the ... button to open the Specify Backup dialog box (Figure 2-42).

![Figure 2-42 Specify Backup](image)

6. Click the Add button. Browse to the location of the previously stored back-up file, and click OK.
7. Click OK to close the Specify Backup dialog box.
8. Select the Restore checkbox for the backup file.
9. Select the Options page from the left side of the Restore Database dialog box.
10. Check the Overwrite the existing database (WITH REPLACE) option.
11. Click OK to restore the database. A confirmation message will be displayed if the restore was successful.

GIS data that appear in the Tree Browser and Airport Geometry will still exist after restoring a database. To clear the GIS data (also known as clearing the cache), navigate to C:\AEDT\Data\[<SQL Server Instance>_<User name>], find the study of interest, and delete the Cache.gdb folder associated with the study of interest.
2.3.3 SQL Server Memory Management

If a database server on the local machine is using too much memory, the server may need to be periodically restarted. Close out of the AEDT program and follow the steps below to restart.

1. Open SQL Management Studio by clicking the Start menu, All Programs, Microsoft SQL Server 2008 R2, SQL Server Management Studio.
2. Connect to the local SQL server.
3. In the Object Explorer, right-click on a server instance and select Restart.
4. Click Yes when prompted for confirmation.
5. The service will stop and start on the selected local server.
3 Load Study

3.1 Load Study

Upon opening the AEDT software, the Load Study dialog box will appear (Figure 3-1). Verify the SQL Server instance name containing the AEDT databases is in the Server field and select a study from the following options:

- Import Study
- Open Existing Study

If this dialog box does not open upon startup of AEDT, there are configuration setting problems. Check the configuration settings listed in Appendix D.

The Last Modified column in the Load Study dialog box reflects the date the study was modified.

In AEDT 2a, if the computer is not connected to the network, the Load Study dialog box will not show a drop-down menu with available SQL database servers. The list will only show studies located on the local SQL database (if any). See Figure 3-2.
W-15 Multiple concurrent users are not supported in AEDT 2a.

W-16 The computer must completely finish start-up procedures before the user opens AEDT. If AEDT is opened before networking has been established on the computer, the error shown in Figure 3-3 will appear. Close out of AEDT and restart.

3.2 Import Study

In AEDT 2a, the AEDT Standard Input File (ASIF) must be used to create a new study. See the ASIF Reference Guide for details on ASIF structure and content, including instructions on how to create an ASIF. For a sample ASIF, navigate to C:\AEDT\AEDT_Workspaces\ASIF_Import\Import_Files\asif_small.xml.

For information on how to import a partial study into an existing study, see Section 5.1.1.

Tools for converting data into the ASIF format are available for:

- INM — included in AEDT installation package, INMASIFConverter.zip, see the INM to ASIF Converter User Guide.
- NIRS — included in AEDT installation package, NIRS2ASIF.zip, see the NIRS to ASIF Converter User Guide.
Creating new studies through the GUI is not supported in AEDT 2a.

Default 10 minute timeout limit in .NET 4.0 may cause ASIF import to fail when importing a large ASIF file into AEDT. A workaround is to add the maximum timeout setting to the machine.config file on the AEDT workstation. The machine.config file for the 32-bit .NET Framework is located at:

C:\Windows\Microsoft.NET\Framework\v4.0.30319\Config

Open the machine.config file and add the following block at the bottom of the file, right before the </configuration> tag. This sets the maximum timeout to 2 hours.

```xml
<system.transactions>
  <machineSettings maxTimeout="02:00:00" />
</system.transactions>
```

- Please note that the machine.config file may be overwritten after applying Microsoft updates.
- If the operating system of AEDT workstation is 64-bit, there will be another machine.config file under the Framework64 directory. Do not change this file.

C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Config

Close all files relating to the ASIF import before importing.

To import a study:
1. Upon startup, select Import Study in the Load Study dialog box and click the OK button to open the Import dialog box (Figure 3-4). If the Load Study dialog is not open, select File, Open Study from the menu bar.
2. Click the Browse button to select an AEDT Standard Input File.
3. Navigate to the appropriate file (.xml) and select Open (Figure 3-5).
4. Upon opening an ASIF, the Import Checklist panel will be populated and all boxes will be selected.
5. Enter a unique Study Name or accept the default name.

Spaces are not allowed in the Study Name and are automatically converted to underscore ("_").

6. Click Import to import the selected study and close the dialog box or click Cancel to close the dialog box.

AEDT validates the ASIF once the file is selected. An error message will be displayed if it fails to validate.

If any error messages are generated during ASIF import, check the AEDT log file which will contain the ASIF import errors: C:\AEDT\AEDT_Workspaces\Output_files\AEDT_Log.txt. Please refer to the ASIF Reference Guide for details on ASIF structure and content.
To load the imported study, click the *Open Existing Study* radio button. Then, select the newly imported study name from the *Study* list in the *Load Study* dialog box and click the *OK* button.
3.3 Open Existing AEDT Study

Upon opening the AEDT software, select *Open Existing Study* from the *Load Study* dialog box to open a study that has already been created or imported. Select the desired study name from the list of existing study databases. The list of study databases will include all studies available to the user on the selected server.

Loading a study with large receptor sets or many airports may take longer than expected. For example, a study containing a receptor network with 1 million points can take several minutes to load.
4 User Interface
The AEDT GUI consists of a menu bar, study hierarchy panel, tree browser panel, airport geometry, navigation bar, and information box (Figure 4-1). The following sections describe each user interface panel in more detail.

![AEDT Main Window](image)

Figure 4-1 AEDT Main Window

4.1 General Navigation

Expand and Collapse Branches
Click on a (+) sign to expand branches, and click on a (-) sign to collapse branches.

Double-Click
Double-clicking on an item will open a dialog box if available.

Right-Click
Right-clicking on an item will display additional options if available.

Resize Panels in Dialog Boxes
Each panel in the AEDT user interface can be resized by sliding the divider between the panels.
4 User Interface

Aviation Environmental Design Tool
User Guide: 2a

Help Buttons in Dialog Boxes
A help button is available in most dialog boxes. Clicking on the help button will open this AEDT User Guide in the appropriate section.

4.2 Study Hierarchy
The study hierarchy is a tree view panel that displays a hierarchical view of the study, airports, scenarios, and cases. Each item in the tree view is called a branch. Selecting an item in the study hierarchy may change the layers shown in the tree browser.

Figure 4-2 illustrates the hierarchy of an AEDT study. An AEDT study may include multiple scenarios. A scenario must include at least one parent case; however, the use of child cases is optional. Users can apply the same case to multiple scenarios, but the user must set up the scenarios first.

![AEDT Study Hierarchy Diagram](image-url)
What is a scenario?
The objective of an AEDT study is to quantify the change in noise, emissions, and fuel burn among various airspace scenarios (design alternatives). A scenario is made up of a combination of cases.

A user will typically have a scenario that represents the baseline and one or more additional scenarios that represent alternatives under evaluation. AEDT does not differentiate between baseline and alternative scenarios. The user can make this distinction in the way scenarios are named.

What is a case?
A case is the smallest building block in an AEDT study. Cases may be combined in a scenario to represent a specific set of aircraft operations. Users define the elements to analyze in a case. Cases can be organized into parent and child cases.

4.3 Tree Browser
The tree browser lists the GIS layers that can be viewed in the airport geometry. When layers are selected in the tree browser, the airport geometry will display the corresponding graphics of the selected layers.

The default study layers are listed under the Airport Layout Elements label. Any layers that are generated by the user including tracks, flight performance, regions, noise contours, impact sets, change zones, etc. are listed under the External Layers label.

Elements displayed in the Tree Browser will change depending on what is selected in Study Hierarchy. The Tree Browser will only display elements that are related to the selected item in Study Hierarchy. In order to see all the available Tree Browser items, select the study element at the top of the Study Hierarchy.

Turn a Layer On or Off
Click the checkbox of the desired layer to display it in the airport geometry. Toggle the checkbox to change the visibility.

The Esri cache can be cleared in order to reset the GIS layers in Tree Browser and Airport Geometry to default settings. To clear the Esri cache, close out of AEDT then navigate to C:\AEDT\Data\[<SQL Server Instance>_]<User name>, find the study of interest, and delete the Cache.gdb folder associated with the study of interest.

Refresh Tree Browser
To refresh the tree browser, select a scenario in the study hierarchy then select an airport (or vice-versa). Or, expand and collapse individual categories in Tree Browser to refresh layers in that category.
4.4 Airport Geometry and Navigation Bar

The airport geometry is used to present graphical display of runways, receptors, tracks, flight performance, noise contours, impact sets, and external layers such as orthophotos. As explained in Section 4.3, the tree browser lists the GIS layers that can be viewed in the airport geometry. The navigation bar provides a set of tools to interact with the airport geometry.

If differences in runway configuration between the study database (or ASIF) and the airport database exist, the runway configuration defined in the study database (or ASIF) will be used.

The airport database reflects current runway configurations at the time of release which may not be appropriate for all studies. It is important to use runway configurations that are consistent with operations modeled in the study.

In the Airport Geometry, use the navigation bar (Figure 4-3) to do the following:

- **Zoom in and out**
- **Pan the Airport Geometry**
- **Zoom to study area**
- **Zoom to visible**
- **Zoom in to an area automatically when selected in the Study Hierarchy**

Select units of measurement (Meters, Feet, Nautical Miles, Kilometers, or Miles) for the Measurement Tool and Generate Range Rings Tool.

Measurement Tool: Click a point to begin the measurement. Click another point or points to draw a path. Double-click on a point to end the measurement. To clear the measurements, navigate to Map, Clear Measurements from the menu bar.

Generate Range Rings Tool: Click this button to open the Range Ring Properties dialog box. Enter Location Radius and Ring Intervals, and then click OK. Click on a point in the Airport Geometry to create range rings (concentric circles around a point).
Identify Tool: Click this button, then select an object in the Airport Geometry to view its attributes in the Information Box.

Select Lat Lon (Latitude/Longitude) or UTM (Universal Transverse Mercator) coordinate systems to actively display the location of the cursor in the Airport Geometry.

When identifying an object, the attributes in the Information Box are in English unit of measurement unless specified.

When clicking in the airport geometry, the map may reposition to an unexpected location. Click the Zoom to Visible button (shown in Figure 4-3) to see the visible features on the map.

The Map menu provides the following commands that are designed to be used with the airport geometry.

- Clear Measurements: Use this menu to clear existing measurement displays and/or range rings from the airport geometry.
- Add External GIS Layer: Use this menu to import a GIS layer into AEDT (see Section 3.9.1).
- Draw GIS Object – Generate Region: Select this command, then click once in the Airport Geometry and drag the mouse cursor to draw a rectangle. The new region layer will be displayed under the Region category in the Tree Browser.

4.5 Information Box

The information box displays properties of the currently selected item in the study hierarchy, tree browser, or airport geometry.

4.6 Modify Tree Browser Layers in Airport Geometry

Right-click a tree browser layer and select among the following options to modify layers in the Airport Geometry. Note that some options are only available for certain layer categories.

If the layer is not visible in the airport geometry, Make Visible to See Layer Options will appear in the right-click options for that layer. Check the box of the layer to make visible in the airport geometry and right-click on the layer again to view right-click options.

- Rendering Properties: Opens the Layer Rendering Properties dialog box (Figure 4-4) which allows the user to customize the appearance of the selected layer.
 1. Edit the Display Text, Outline, or Line Width.
 2. The Sample graphic will update to show the current selection.
 3. The Fill property is applicable to layers with polygon features as opposed to points or lines.
4. The Color Levels property is applicable to population based receptors and noise levels. To change Color Levels:
 a. Click Color Levels to open the Color Level Model dialog box (Figure 4-5).
 b. Double-click on the color cell to select a different color for that level.
 c. Enter a different range value in the currently selected level.
 d. Click the + button to add a new level. Click the – button to remove the currently selected level.
 e. To apply gradient colors, select desired levels by using Ctrl key then click the gradient button.
 f. Click OK to apply changes and close the dialog box. Click Cancel to discard changes.
5. Select desired Current Field and check the Display Current Field box to display the selected field on map.
6. Click Field Summary Statistics to view the data summary for the selected field.
7. The Minimum Display Value and Maximum Display Value are applicable to population based receptors and contour layers.
8. Click OK to apply changes and close the dialog box. Click Cancel to discard changes.

![Figure 4-4 Layer Rendering Properties Dialog Box](image-url)
- **Transform Layer**: Opens the *Combine Paths* dialog box which allows the user to create a new layer based on existing layers.
 1. Select an *Operation Layer*.
 2. Select a *Boolean Operation* (*Intersect*, *Union*, *Erase*, or *Subdivide*).
 3. Enter a name for the new layer.
 4. Select a *Color* for the layer, or use the default.
 5. Click *OK* to create a new layer and close the dialog box. Click *Cancel* to discard changes.
 6. The new layer will be displayed under the *Derived* category in the *Tree Browser*.

- **Remove Layer**: Allows the user to permanently remove the selected layer from AEDT.
 1. Right-click on the layer and select *Remove Layer*.
2. A *Confirm Delete* message will pop up to confirm whether the user wants to permanently remove this layer from the GIS. Click *OK* to remove the runway layer or click *Cancel* to keep the runway layer.

The default study layers, such as runways and receptors, cannot be removed from the study.

- **Export Layer**: Allows the user to export the selected layer as a shape file format.
 1. Right-click on the layer and select *Export Layer*.
 2. Navigate to the desired directory to save the layer.
 3. Enter a unique *File name* or accept the default name.
 4. Click *Save* to export the layer as shape files. It will create a set of files with the following extensions: .shp, .shx, .dbf, .prj, .sbn, .sbx, and .xml.
 5. Click *Cancel* to discard the action.
5 Setup

Figure 5-1 depicts the relationship among all the options a user can select in AEDT and their respective refinements as the user sets up components of a study and ultimately runs a job.

5.1 Set Up Data

5.1.1 Import Partial ASIF
AEDT supports importing a partial ASIF that contains individual components of a study which can include airport layouts, annualization, boundary, case, fleet, operation, receptor set, scenario, or track operation set. See the ASIF Reference Guide for more information about the ASIF.
Default 10 minute timeout limit in .NET 4.0 may cause ASIF import to fail when importing a large ASIF file into AEDT. A workaround is to add the maximum timeout setting to the machine.config file on the AEDT workstation. The machine.config file for the 32-bit .NET Framework is located at:
C:\Windows\Microsoft.NET\Framework\v4.0.30319\Config

Open the machine.config file and add the following block at the bottom of the file, right before the </configuration> tag. This sets the maximum timeout to 2 hours.

```xml
<system.transactions>
  <machineSettings maxTimeout="02:00:00" />
</system.transactions>
```

- Please note that the machine.config file may be overwritten after applying Microsoft updates.
- If the operating system of AEDT workstation is 64-bit, there will be another machine.config file under the Framework64 directory. Do not change this file.
C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Config\n
To import a partial ASIF:
1. From the menu bar select File, Import to open the ASIF Partial Importer dialog box (Figure 5-2).
2. Click the Browse button, navigate to the appropriate file (.xml) and select Open.
3. Depending on the content of the selected partial ASIF, AEDT may prompt the user to specify where in the study to import the data.
 - If the Scenarios drop-down menu is active, select the desired scenario.
 - If the Cases list is active, select the desired case.
4. Click Import to import the selected file.
5. Click Yes when prompted to save the study before importing.
6. Click OK when Import Complete message is displayed.
7. To view the imported data, restart AEDT by selecting File, Open Study from the menu bar.

AEDT validates the ASIF once the file is selected. An error message will be displayed if it fails to validate.

If any error messages are generated during ASIF import, check the AEDT log file which will contain the ASIF import errors: C:\AEDT\AEDT_Workspaces\Output_files\AEDT_Log.txt. Please refer to the ASIF Reference Guide for details on ASIF structure and content.
Running reports or jobs, or importing the ASIF can cause the AEDT application to go to the background. Click on the AEDT application on the Windows Taskbar at bottom of the screen to bring AEDT back to the foreground.

5.1.2 Import Population Data

Users can import population data into a study through the Population Import Tool. See Appendix E for more information on how to import population data.

5.1.3 Add GIS Layer

To import a GIS layer into AEDT:

1. From the menu bar select *Map, Add External GIS Layer* (Figure 5-3). The *Open External GIS Layer* dialog box will open.

2. Navigate to the appropriate shapefile (.shp) and select *Open* to add the layer.

3. The new GIS layer is added to the Tree Browser and is displayed in the Airport Geometry.
To toggle the GIS layer on and off after it has been added, check or uncheck the checkbox for the GIS layer in the Tree Browser.

Figure 5-3 Add External GIS Layer from Map Menu

To view an image file (.tff or .img) in the Airport Geometry, place the desired file in the following directory:

C:\AEDT\Data\<SQL Server Instance>_\<User name>\\Study Name\Backgrounds

5.1.4 Define Terrain File Path Location

See Appendix F for more information on how to download terrain data files.

Supported terrain data* types (3CD, DEM, and Grid Float) should not be put together in the same folder location. Each terrain type should have its own separate folder. Define the terrain file path correctly before running any given job.

*Terrain data are only supported if they are in one of the following projections: NAD83 or WGS84.

To include terrain files in a study, point to the Terrain File Path:

1. In the desired study, from the menu bar select Setup, File Paths (Figure 5-4).
2. In the File Paths dialog box (Figure 5-5) click the Change button next to Terrain File Path in the top portion of the dialog box.
3. Navigate to a terrain file of the following formats: 3CD, DEM* or Grid Float (Figure 5-6).
4. Click the OK button to select the terrain file.
5. Click OK to apply changes and close the dialog box. Click Apply to apply changes and keep the dialog box open. Click Cancel to discard changes.

Select File, Save from the menu bar in order to commit any file path changes to the study database.

In AEDT 2a, running a job with 3CD terrain data may take longer than expected. The 3CD terrain data will be converted to grid float terrain data the first time 3CD is invoked.

The conversion from 3CD to grid float introduces an error of a half a pixel due to conflicting reference points. It is recommended to use grid float data to eliminate this error.

AEDT 2a processes terrain data with the GIS software, Esri. INM processes terrain data with the GIS software, Global Mapper. Esri and Global Mapper behave differently when a terrain coordinate (latitude and longitude) is not directly on a terrain data point. In AEDT
2a, Esri uses the terrain elevation of the nearest terrain data point. In INM, Global Mapper performs a bilinear interpolation for the four nearest terrain points. In areas of substantial terrain variation, this will cause a substantial difference between AEDT and INM results, especially when line-of-sight blockage is applied.
5.1.5 Define Weather File Path Location

In AEDT 2a, weather data are applied to a study based on a hierarchy of data availability, as follows:

1. High fidelity weather data (user input), in the following order:
 a. RUC13
 b. RUC20
 c. GEOS
 d. NCAR
2. Average annual weather from the airport database.
3. International standard atmosphere (ISA) weather conditions are applied when weather data are not available.

This section provides information on how to define the weather file path location to apply high fidelity weather. See Appendix G for more information on how to download and use high-fidelity weather data in AEDT.

All acoustic propagation calculations use the airport average annual weather parameters regardless of higher fidelity weather availability.

In AEDT 2a, the user cannot make changes to the weather data (files or file path) between runs in a single session. The cache that stores the weather data does not update after changes are made. The workaround is to close and restart the AEDT application. This ensures that the cache will be newly created and the changes will be applied.

To include or remove weather files in a study, point to the Weather File Path:

1. In the desired study, from the menu bar select Setup, File Paths (Figure 5-4).
2. To add a weather file path:
 a. In the File Paths dialog box (Figure 5-5) click the Add button next to Weather File Paths.
 b. Navigate to the directory where the weather files are stored (Figure 5-6). AEDT 2a supports GEOS, NCAR, and RUC weather data.
 - Sample NCAR files are provided for June 1, 2010, and can be found in the following directory: C:\AEDT\AEDT_Workspaces\Sample_Wx_Data\NCAR. These files must be pre-processed. See Appendix G for instructions on pre-processing weather data.
 - RUC and GEOS files are not provided with the AEDT 2a installation. See Appendix G for information on downloading RUC weather data.
3. Click the OK button to select the weather file directory.
4. Repeat step 2 to add additional weather file paths, if necessary.
5. To remove a weather file:
 a. In the File Paths dialog box (Figure 5-5) click the weather file path of interest.
 b. Click the Remove button to remove the weather file directory.
6. Click OK to apply changes and close the dialog box. Click Apply to apply changes and keep the dialog box open. Click Cancel to discard changes.

Select File, Save from the menu bar in order to commit any file path changes to the study database.
Studies imported from INM with the INM2ASIF converter tool will not contain study boundary information. Without this boundary information, AEDT will not process any high fidelity detailed weather information. To use detailed weather with this type of imported study, manually edit the ASIF generated by the INM2ASIF tool and enter the boundary information before importing into AEDT 2a. See the ASIF Reference Guide for more details on the <boundary> XML element. The study boundary latitude and longitudes should be larger than the largest receptor set used with any of the scenarios in the study.

Average annual airport weather data can be viewed within the *Airport* dialog box in the *Weather* tab. See Section 5.3 to access the dialog box, and see example weather information in Figure 5-7.

![Figure 5-7 Airport Dialog Box – Weather Tab](image)

Running jobs with weather data may take a significant amount of time and the progress bar may disappear. To verify that AEDT is running, open the Windows Task Manager by holding Ctrl + Alt and pressing the Delete key, then click the Task Manager button. The process named FAA.AEE.AEDT.AEDTApp.exe should appear in the Processes tab, shown in Figure 5-8 below.
5.1.6 Export Aircraft

The Export Aircraft functionality in AEDT allows users to export system aircraft data as an XML file. The exported XML file contains data that has been extracted from an AEDT database as a means to create new user-defined aircraft data that can subsequently be imported back into AEDT. Since this data duplicates existing data in the Study, it cannot be successfully reimported as is.

To export desired aircraft/engine combinations as an XML file:
1. From the menu bar select File, Export Aircraft.
2. To add an aircraft/engine combination, select the combination of interest from the System Aircraft list and click Add (Figure 5-9).
3. To remove a combination, select the combination of interest from the Export List and click Remove.
4. Navigate to the desired folder to store the file by clicking the Browse button, or accept the default location that appears in the Aircraft Export File field.
5. Enter a unique file name or accept the default name.
6. Click the Export XML button.
5.2 Set Up Study Information

Saving a study is necessary in order to commit any changes to the study database. Clicking OK or Apply in dialog boxes does not save changes to the study database. It is recommended to save the study periodically. From the menu bar select File, Save.

In AEDT 2a, a new study must be created through the ASIF.

To open the Study dialog box, either:
- From the menu bar select Setup, Study Setup (Figure 5-10); or
- In the Study Hierarchy, double-click the study name.
Once the Study dialog box (Figure 5-11) is open:
1. Edit the study Name and Description as desired.
2. Select the Study Type and Properties from the drop-down menu (Noise And Emissions).
3. Edit airports from the Airport List; see Section 5.3 on editing airports.
4. Edit scenarios from the Scenario List; see Section 5.4 on editing scenarios.
5. Click OK to apply changes and close the dialog box. Click Apply to apply changes and keep the dialog box open. Click Cancel to discard changes.

5.3 Set Up Airports

In AEDT 2a, a new airport must be created through the ASIF.

To open the Airport dialog box (Figure 5-12), either:
- Open the Study dialog box by either selecting Setup, Study Setup from the menu bar or by double-clicking the study name in the Study Hierarchy.
 - View the Airport List for existing airports in the study.
 - Select an airport of interest and click Edit to open the Airport dialog box; or
- From the Study Hierarchy, click on the (+) sign next to the airport of interest to view the airport layouts, then double-click on the name of the airport to open the Airport dialog box.
A grey or yellow background in a dialog box indicates that the content is read-only.

Location Tab
- The *Location* tab (Figure 5-12) contents are read-only, except for *Elevation* field which can be edited.

Time Zone Tab
- The *Time Zone* tab (Figure 5-13) is read-only.

Weather Tab
- The *Weather* tab (Figure 5-14) is read-only.
- Select this tab to view the average annual weather data for the selected airport. In AEDT 2a, a default value of 1 representative day for each airport is provided, which consists of historical weather data averaged over 30 years.
5.3.1 Set Up Airport Layouts

To view the name and description of the airport layout:
1. In the Study Hierarchy, click on the (+) sign next to the airport of interest, and double-click on an airport layout. The Airport Layout dialog box will open (Figure 5-15).
2. Click Close to close the dialog box.

To view airport-specific information:
1. In the Study Hierarchy, click on the (+) sign next to the airport of interest, and then select an airport layout.
2. In the Tree Browser, select the checkbox of the corresponding runway.
3. The airport geometry will update to show the selected airport layout (Figure 5-16).
4. From the Tree Browser (Figure 5-17), double-click on Runways category or a runway of interest to open the Runways dialog box (Figure 5-18). All information is read-only.

An airport layout must be selected in the Study Hierarchy to open the Runways dialog box.
Figure 5-16 AEDT Main Window with Runways Shown in Airport Geometry

Figure 5-17 Runways in Tree Browser
5.4 Set Up Scenarios

5.4.1 Set Up or Modify Scenarios

In AEDT 2a, scenarios must be created through the ASIF, not through the GUI. The user can run operations only on a scenario that was created in an ASIF and imported into a study.

To modify a scenario:
1. Open the Scenario dialog box (Figure 5-19). To access this dialog box, either:
 a. From the menu bar select Setup, Study Setup. View the Scenario List for the existing scenarios in the study. Select the scenario of interest and click the Edit button; or
 b. From the Study Hierarchy, double-click on the scenario of interest.
2. Edit the scenario Name and Description as desired.
3. Select the Dynamic Aircraft Performance Model.
4. Select the Start Time.
5. Enter the Sulfur to Sulfate Conversion Rate in decimal form. The default value is 0.024 (2.4%).
6. Enter the Fuel Sulfur Content in decimal form. The default value is 0.0006 (0.06%).
7. Enter the Noise & Emissions Altitude Cutoff in feet.
8. Click OK to apply changes and close the dialog box. Click Apply to apply changes and keep the dialog box open. Click Cancel to discard changes.
5.5 Set Up Cases

5.5.1 Set Up or Modify Cases

In AEDT 2a, cases must be created and/or modified through the ASIF, not through the GUI. The user can run operations only on a case that was created in an ASIF and imported into a study.

To modify an existing case:
1. From the Study Hierarchy, click the (+) sign next to Scenarios folder to expand the list. Click the (+) sign next to the scenario of interest.
2. Continue to expand the cases by clicking the (+) sign, until the deepest case level of interest is visible.
3. Right-click on the child case of interest and select Properties.
4. A Case dialog box will appear (Figure 5-20).

The Case dialog box will only open after selecting Properties in the deepest case level in the Study Hierarchy.

5. Edit the case Name and Description as desired.
6. The Case Type will be automatically filled in and shaded grey.
7. Click OK to apply changes and close the dialog box. Click Apply to apply changes and keep the dialog box open. Click Cancel to discard changes.
5.5.2 View Aircraft Operations

In AEDT 2a, aircraft operations (called Track Operations in ASIF) must be created and edited through an ASIF that can be imported into a study (either as part of a full study import or partial import of aircraft operations). The user can view aircraft operations information from the GUI by opening the Aircraft Operations dialog box (Figure 5-21). The Aircraft Operations dialog box can be accessed from the Study Hierarchy and from the menu bar.

To access the Aircraft Operations dialog box from the Study Hierarchy:
1. In the Study Hierarchy, select a scenario of interest, and then click the (+) signs to expand the hierarchy until the deepest case level of interest is visible.
2. Right-click the child case and select Edit Operations.
3. An Aircraft Operations dialog box will open.
4. Select the scenario of interest from the Scenario drop-down menu.
5. Select the case of interest from the Case drop-down menu. The aircraft in the selected case are displayed.
6. Select an aircraft of interest to view its Operations Summary.
7. Click Close to close the dialog box.

To access the Aircraft Operations dialog box from the menu bar:
1. From the menu bar select Setup, Study Aircraft to open the Aircraft Operations dialog box.
2. Select the scenario of interest from the Scenario drop-down menu.
3. Select the case of interest from the Case drop-down menu. The aircraft in the selected case are displayed.
4. Select an aircraft of interest to view its Operations Summary.
5. Click Close to close the dialog box.
The Aircraft Operations dialog box will not open in the AEDT 2a GUI if there are more than 2,100 operations.

When creating overflight type operations in an ASIF (see the ASIF Reference Guide), the user must identify an arrival airport and runway for which the associated weather data would most closely match the conditions the user would like to see used in the modeling of the overflight. In addition, the Arrival On Time is used to determine whether the operation occurs during the day, evening, or night for approach operations. Arrival Off Time is used to determine whether the operation occurs during the day, evening, or night for all other operations.

![Aircraft Operations Dialog Box]

A grey or yellow background in a dialog box indicates that the content is read-only.

5.6 Set Up Receptors and Receptor Sets

5.6.1 Receptors

In AEDT 2a, discrete receptors and receptor networks can be set up through the GUI or in the ASIF. See the ASIF Reference Guide for more information about the ASIF.

In AEDT 2a, removing receptors in the GUI is not supported.
In AEDT 2a, population receptor sets can only be imported into a study through the ASIF or through the Population Import Tool (Appendix E). Population receptor sets are not displayed in the Receptors or Receptor Sets dialog boxes, however, details of such receptor sets can be viewed by generating a receptor set report (see Section 6.4.3) or by making them visible by selecting them in the Tree Browser.

To set up receptors through the GUI:
1. From the menu bar select Setup, Receptors to open the Receptors dialog box (Figure 5-22).
2. Select the type of receptor to setup (Receptor Network or Discrete Receptors tabs).
 - A receptor network is a grid of receptors, See Figure 5-22. The user defines the grid size and location by filling in the following fields:
 o Enter a Name.
 o Location
 ▪ X (Long) – lower left corner of the grid in degrees expressed as a decimal fraction
 ▪ Y (Lat) – lower left corner of the grid in degrees expressed as a decimal fraction
 ▪ Elevation – the elevation should be defined based on the airport elevation in meters above mean sea level (MSL). To look up the airport elevation, double click on the airport of interest to open the Airport dialog box and view the Location tab (Figure 5-12).
 ▪ Height in meters
 o Spacing – distance between receptors
 ▪ X (Long) in nautical miles
 ▪ Y (Lat) in nautical miles
 o Count
 ▪ X (Long) – number of receptors on the x-axis
 ▪ Y (Lat) – number of receptors on the y-axis
 Receptors are automatically generated based on the user input (e.g., 4 nmi by 4 nmi with a point every 0.5 nmi).

 Receptors imported without a defined elevation are considered to have an elevation of null in the ASIF, but is displayed as a zero value in the Receptors dialog box. AEDT will process the null value.

 - A discrete receptor is a single point (latitude/longitude), see Figure 5-23. An example is a noise-sensitive dwelling like a school or historic property. The user defines the receptor location by filling in the following fields:
 o Enter a Name.
 o Location
 ▪ X (Long) – lower left corner of the grid in degrees expressed as a decimal fraction
 ▪ Y (Lat) – lower left corner of the grid in degrees expressed as a decimal fraction
 ▪ Elevation – the elevation should be defined based on the airport elevation in meters above mean sea level (MSL). To look up the airport elevation, double click on the airport of interest to open the Airport dialog box and view the Location tab (Figure 5-12).
 ▪ Height in meters

 The use of terrain may affect the receptor elevation defined when setting up receptors. The hierarchy in which receptor elevation will be used in calculation is as follows:
Editing receptor sets will invalidate results of jobs that were previously run with the receptor set. To retain original results, create a new receptor set instead of modifying an existing receptor set.

Receptor networks have a limit of 1 million points.

3. Click Add to add a new receptor, or select from the list of existing receptors to edit.
4. Add or edit fields for each receptor as appropriate (see figures for each tab below).
5. Select one receptor and click the Create Set button to open the Receptor Sets dialog box.
6. Set up receptor sets according to the instructions in Section 5.6.2.
7. Click OK to apply changes and close the dialog box. Click Apply to apply changes and keep the dialog box open. Click Cancel to discard changes.
5 Setup

Aviation Environmental Design Tool
User Guide: 2a

Figure 5-22 Receptors Dialog Box – Receptor Network Tab

Figure 5-23 Receptors Dialog Box – Discrete Receptors Tab
To view receptors in Airport Geometry:
1. The *Tree Browser* displays all the receptors (both population and grid types) in the study under the *Receptors* category.
2. In the *Tree Browser*, check the checkbox of the desired receptor layer.
3. Population type receptors are displayed in a range of colors based on the population counts. Grid type receptors are displayed in a single color. The display properties can be modified in the *Layer Rendering Properties* dialog box (see Section 4.6).

5.6.2 Receptor Sets

A receptor set is a collection of one type of receptor. A receptor set cannot include more than one type of receptor. In AEDT 2a, receptor sets can be created or edited through the ASIF or through the GUI. See the ASIF Reference Guide for more information about the ASIF.

In AEDT 2a, removing receptor sets in the GUI is not supported.
N-39

In AEDT 2a, population receptor sets can only be defined in an ASIF and imported into a study. Population receptor sets are not displayed in the Receptors or Receptor Sets dialog boxes, however, details of such receptor sets can be viewed by generating a receptor set report (see Section 6.4.3) or by making them visible by selecting them in the Tree Browser.

Receptor sets must have at least one receptor or population point and have a limit of 500,000 receptors.
N-41

To create or edit receptor sets through the GUI:
1. From the menu bar select *Setup, Receptor Sets* to open the *Receptor Sets* dialog box (Figure 5-24).
2. Click *Add* to add a new receptor set, or select from the list of existing receptor sets to edit.
3. Choose the *Receptor Type* (select *Receptor* or *Network*).
4. Edit the *Name* and *Description* fields for each receptor set as appropriate.
5. To add receptors, select the receptors of interest in the list titled *Available Receptor* and click *Add to Set*.
6. To remove receptors, select the receptors of interest in the list titled *Current Receptor* and click *Return to List*.
7. Click *OK* to apply changes and close the dialog box. Click *Apply* to apply changes and keep the dialog box open. Click *Cancel* to discard changes.
8. From the menu bar select *File, Save* in order to commit any changes to the study database. Newly created receptor sets cannot be viewed in the Airport Geometry unless the study is saved first.
5.7 Set Up Noise Metrics

To view existing noise metric properties, from the menu bar select Setup, Noise Metrics and select the noise metric of interest (Figure 5-25).

To add user-defined noise metrics:
1. From the menu bar select Setup, Noise Metrics.
2. Click the Add button.
3. Enter a Name, Metric Type, Family, Weight, Start Time, and End Time for the desired user defined metric.
4. Click OK to apply changes and close the dialog box. Click Apply to apply changes and keep the dialog box open. Click Cancel to discard changes.

AEDT 2a only supports one user-defined metric in a study.
5.8 Save Backup Study File (Generate Administrative File)

The Generate Administrative File functionality in AEDT allows users to meet the NEPA requirement that mandates compilation and record keeping of all the information used in the study.

To generate administrative file:

1. From the menu bar select File, Generate Administrative File.
2. Navigate to the desired folder to store the report.
3. Enter a unique File name or accept the default name.
4. Click the Save button.
5. The zip file contains the following:
 - AdminFile.xml which lists the names and version information of the databases used in the study as well as weather or terrain files used in the study
 - AEDT_Log.txt
 - FAA.AEE.AEDT.AEDTApp.exe.config – AEDT application configuration file
 - SQL Server database backup file of the study database (.bak)

When running the AEDT GUI on a client machine and connecting to an AEDT study database located on a remote SQL Server, Generate Administrative File will not create a backup file of the study database. This is a limitation by Microsoft SQL Server. A workaround is to manually create the SQL Server database backup file and include it in the zip file.
6 View

6.1 Annualization

Annualization is the process of performing a weighted summation\(^3\) over the noise and emission results from some or all of the cases within a scenario in order to create results that represent noise and emissions exposures over the time period of interest. Depending on the data represented by the cases and the time period of the results, annualized results may be computed by applying a user defined weighting scheme. AEDT 2a is flexible enough to construct any type of annualized weighting scheme desired; however, annualized results will only be produced by running all cases used by the annualization process in one job, which can be done most easily by running a full scenario. Case-level jobs will not produce annualized results. For instructions on how to run a scenario-level job with annualization, see Section 7.3.

In AEDT 2a, the user can create annualization schemes through the GUI or in the ASIF. The user must identify each case referenced for annualization and specify weighting factors for each case. For more information on how to setup annualizations in the ASIF, see the ASIF Reference Guide.

To view annualizations in the GUI:
1. Select View, Annualizations from the menu bar. The Annualizations dialog box will open.
2. Select Annualization to view the annualization tree.

Figure 6-1 displays an example of an annualization tree, with a description provided below:
- The text on the left side of the blue lines displays the names of the cases being annualized within the scenario (level 1 below).
- Annualization groups are displayed as cases connected by red lines (level 2 below).
- The black numbers, above the blue lines, represent the user defined annualization factors (in decimal form representing a percent, e.g. 0.7=70%).
- The blue numbers below the blue lines represent the scale factor.
- The gray numbers with yellow background (above the blue lines on the right side) is the annualization factor multiplied by the parent case's annualization factor.
- The green number represents the final computed annualization based on the black, user defined annualization factors for each case or intermediate annualization group (in decimal form representing a percent, e.g. 0.7=70%). The final computed annualization is computed by multiplying all of the black user defined weighing factors found along the path from the top-most annualization group (level 3) down to the position of interest.

\(^3\) The word summation is used figuratively and the actual process of correctly summing or adding together noise or emissions results depends upon the metric being used, e.g. energy metric results would not be directly added together for a result since they are logarithmic values, but would rather be log-added.
Example 1: If the area of interest is the first case listed in level 1 in Figure 6-1, the black value in level 3 (1.000) is multiplied by the black value in the top annualization group that contains the first case in level 2 (0.700), and finally is multiplied by the black value corresponding to the first case in Level 1 (1.000). By this calculation, the green value for the first case is 0.700.

Example 2: If the area of interest is the bottom annualization group listed in level 2 in Figure 6-1, the black value in level 3 (1.000) is multiplied by the black value in the bottom annualization group in level 2 (0.300). By this calculation, the green value for the bottom annualization group is 0.300.

- The red numbers, in the bottom corner of each annualization group, represent the sum of the black, user defined annualization factors for that group.
- The right-most section of the annualization tree shows the top-most level, Level 3, containing the all of the annualization information in the tree and is given a weighting factor of 1.0, in Figure 6-1. To double the entire annualization, a weighting factor of 2.0 should be used instead of 1.0 (Level 3 in Figure 6-1).
Figure 6-1 Annualization Tree
To create a new annualization or duplicate an existing annualization:
1. From the menu bar select View, Annualizations. The Annualizations dialog box will open.
2. From the Scenarios drop-down menu, select a desired scenario to be annualized.
3. Click Create New to create a new annualization or select an existing annualization from the drop-down menu and click Duplicate.
4. If desired, click Re-Name to rename the annualization. When complete, click Done Re-Name.
5. From the Scenarios drop-down menu, select a scenario of interest and the Cases list will update.
6. To add a case to Annualization Tree, select a desired case and click ADD.
7. To remove a case from Annualization Tree, click the circle node of the desired case, then click REMOVE.
8. Cases can be linked two at a time. Select two cases by clicking the circle nodes, then click Link.
9. Cases can be un-linked one at a time. To remove a link, click the circle node of the desired case, then click Un-Link.
10. Repeat steps 5-8 to add, link, or remove cases as appropriate.
11. Click Normalize to normalize the case-level annualization weights (left-most values) by the total weight in the group (sum of left-most values).
12. Click OK to apply changes and close the dialog box. Click Apply to apply changes and keep the dialog box open. Click Cancel to discard changes.

6.2 Tracks

To display tracks in the Airport Geometry:
1. From the menu bar select View, Tracks. The Track Selection dialog box will open (Figure 6-2).
2. Tracks can be searched using two criteria, either by selecting a scenario or by selecting airports and runways.
 a. From the Scenarios tab, select a scenario of interest. The list will display the cases under the selected scenario. Select desired case(s). Multiple selections can be made by using Ctrl key or Shift key; or
 b. From the Airport & Runways tab, select desired Airport, Runway End, and Operation Type.
3. Tracks list will update based on the selection.
4. Select desired track(s) to display on the map and click the Display on Map button.
5. Close the Track Selection dialog box.
6. The new track layer is added to the Tree Browser under the Tracks category and is displayed in the Airport Geometry.
When importing a new study boundary layer through partial ASIF import, the original boundary will no longer be included in study computations, however AEDT will not remove a previously loaded boundary layer from the tree browser. It is recommended to remove the unwanted boundary layer by right clicking on the layer in the tree browser before importing a new boundary layer.

When importing a new study boundary layer through partial ASIF import, it will invalidate results for all jobs that have been run with or without a study boundary.

In AEDT 2a, the study boundary must be created and/or modified through the ASIF, not through the GUI. See the ASIF Reference Guide for more detailed information on the ASIF.
To view the study boundary in the Airport Geometry:

1. From the menu bar select View, Study Boundary.
2. The study boundary is displayed in the Airport Geometry (Figure 6-3) and a new study boundary layer is displayed under the Region category in the Tree Browser.
3. If boundary information is missing from the study, then a “No boundary information found” message will be displayed.

Figure 6-3 Study Boundary in Airport Geometry
6.4 Input Reports
Once a study has been imported through the ASIF importer, the study input report, fleet mix report, and receptor set report are available for viewing.

To view reports, select View from the menu bar (Figure 6-4). These reports can be viewed and stored external to the AEDT software, in a user-defined location. Appendix H provides snapshots of example reports.

Running reports or jobs, or importing the ASIF can cause the AEDT application to go to the background. Click on the AEDT application on the Windows Taskbar at bottom of the screen to bring AEDT back to the foreground.

6.4.1 Study Input Report
The study input report allows the user to see all the scenarios, cases, and airports in the study along with the parameters for each of the study elements. The default file name for a study input report is [StudyName] Study Input Report.txt.

To view the study input report:
1. From the menu bar select View, Study Input Report.
2. Navigate to the desired folder to store the report.
3. Enter a unique File name or accept the default name.
4. Click the Save button.
5. A message will appear after the report generates stating the location of the file. See Appendix H for a snapshot of an example report.

Case level jobs will display All Cases in the Jobs section of the report and not the specific case that is associated with the job. To view the case associated with the job, open the Jobs dialog box from the Run menu, Start Run..., and view the job.

6.4.2 Fleet Mix Report
The fleet mix report (Figure 6-5) allows the user to see the air operations under each scenario or case in various ways. The user can have the fleet mix report provide a summary of operations, a detailed list of all the aircraft types, a comparison of aircraft types by scenario/case, or runway counts by scenario/case. The default file name for a fleet mix report is report_fleet_mix.csv.
To view a fleet mix report:
1. From the menu bar select View, Fleet Mix Report.
2. Select a Report Type and Report Level from the drop-down menus.
3. Click the Browse button and navigate to the desired folder to store the report, or accept the default location that appears in the File Name field.
4. Enter a unique file name or accept the default name.
5. Click the Run Report button.
6. A message will appear after the report generates stating the location of the file. See Appendix H for a snapshot of an example report.
7. Units in the fleet mix report:
 - Number of operations on a user-selected report level.

6.4.3 Receptor Set Report
The receptor set report (Figure 6-6) allows the user to see the details of a user-specified receptor set, for example a population or grid receptor set. The default file name for a receptor set report is report_receptor_set.csv.

To view a receptor set report:
1. From the menu bar select View, Receptor Set Report.
2. Select a Receptor Set from the drop-down menu.
3. Navigate to the desired folder to store the report by clicking the Browse button, or accept the default location that appears in the File Name field.
4. Enter a unique file name or accept the default name.
5. Click the Run Report button.
6. A message will appear after the report generates stating the location of the file. See Appendix H for a snapshot of an example report.
7. Units in the receptor set report:
 - Altitude = feet.
 - Land use = percentage of area.
6.5 Job Flight Performance Summary Report

The job flight performance summary report (Figure 6-7) allows the user to view a summary of flight performance errors from multiple log files. The errors describe why operations could not be modeled. The default file name for the report is report_log_results.txt.

To view a job flight performance summary report:
1. From the menu bar select View, Job Flight Performance Summary Report.
2. Click the Select button. Navigate to the directory where log files are stored (C:\AEDT\AEDT_Workspaces\Output_files), and select desired log files.
3. Check the Detailed Error Reporting checkbox if desired.
 - The report will summarize errors for each case if the detailed error reporting button is not checked.
 - The report will list each flight (air operation IDs) and associated errors if the detailed error reporting button is checked.

4. Navigate to the desired folder to store the report by clicking the Browse button, or accept the default location that appears in the Report File Name field.
5. Enter a unique file name or accept the default name.
6. Click the Run Report button.
7. A message will appear after the report generates stating the location of the file. See Appendix H for a snapshot of an example report.

evt is a value used for internal processing and should be disregarded. airOp is air operation ID, and is linked to the AIR_OP_ID column in the AIR_OPERATION table.
6.6 Error Log

AEDT application and ASIF importer error messages are written to a log file located in
C:\AEDT\AEDT_Workspaces\Output_files\AEDT_Log.txt.

Taskmaster service logs are written to a log file located in
C:\AEDT\AEDT_Workspaces\Output_files\AEDT_TMService_Log.txt.

It is recommended to review the log file(s) after every job run, then archive and keep
track of log files.

To access the AEDT log through the GUI:
1. From the menu bar select View, AEDT Error Log.
2. The Error Log dialog box displays the content from the most recent log file, AEDT_Log.txt. It shows
date and time, module name, and description of each error present in the study (Figure 6-9).
3. To view a different log file, click the Browse button.
4. Navigate to C:\AEDT\AEDT_Workspaces\Output_Files.
5. Select the error file of interest and click the Open button (Figure 6-8).
6. After the file has been selected, the error log table will be populated (Figure 6-9).
7. Click Cancel to close the dialog box.

AEDT 2a divides the log files into 100 MB partitions in ascending numerical order. Errors
occurring toward the end of the processing cycle will be located in the file without a
number, named AEDT_Log.txt; while errors occurring toward the start of the processing
cycle will be located in the greatest numbered file, such as AEDT_Log.txt.10 in the sample
log files shown in Figure 6-8. The number of log files is limited to 10.
Figure 6-8 AEDT Log Files

Figure 6-9 Error Log Dialog Box
7 Run Study

7.1 Define Run Options

Run options can be defined within the Run Options dialog box. Open the Run Options dialog box by selecting Run from the menu bar, Run Options (Figure 7-1).

In AEDT 2a, removing run options in GUI is not supported.

1. In the Run Options dialog box (Figure 7-2), the left panel lists existing run options. To edit, select a run option from the list.
2. To create a new combination of run options, begin by clicking the Add button.
3. Enter a unique Name or accept the default name for the run option.
4. Enter Description if desired.
5. Select Run Performance Only, Apply Atmospheric Absorption, and/or Check Track Angles, if appropriate.

Annualization is not permitted if run performance only is selected when defining run options.

When Check Track Angles is selected, flights on tracks where the track angle is above a certain threshold will be removed from computation as non-realistic.

6. Select Truncate and/or Extend Flight Paths to Study Boundary, if appropriate. See notes at the end of this section for more information.
7. Select Noise Metric (DNL, CNEL, LAEQ, LAEQD, LAEQN, SEL, CEXP, NEF, WECPNL, EPNL, CDNL, LAMAX, LCMAX, PNLTM, TALA, TALC and TAPNL are available and are referenced to 0.0 dB in AEDT 2a).
 - If time above threshold noise metric (TALA, TALC, and TAPNL) is selected, enter the desired Time Above Threshold.
 - To view existing noise metric properties, from the Setup menu, select Noise Metrics and select the noise metric of interest (see Section 5.7).
8. Select Use Terrain if appropriate. See Section 5.1.4 to use a terrain file.
 - Define terrain file type from the drop-down menu (3 CD, DEM* or Grid Float).

It is not recommended to use the Line of Sight Blockage feature in AEDT 2a because terrain processing does not allow for interpolation between terrain data pixels in AEDT 2a.
9. Select **Lateral Attenuation (All Soft Ground or No Prop/Helo Attenuation)**.
 - When **All Soft Ground** is selected, the lateral attenuation noise adjustment is applied to all aircraft in an AEDT scenario.
 - When **No Prop/Helo Attenuation** is selected, the lateral attenuation noise adjustment is only applied to jet-engine aircraft in an AEDT scenario, and it is not applied to the propeller-driven aircraft.

10. For studies with multiple airports, select **Use Single Airport Weather** and select the appropriate airport from the drop-down menu to apply that airport’s weather data to the entire study area.

11. Click **OK** to apply changes and close the dialog box. Click **Apply** to apply changes and keep the dialog box open. Click **Cancel** to discard the action.

![Figure 7-2 Run Options Dialog Box](Image)
When the **Truncate and/or Extend Flight Paths to Study Boundary** box is checked in the **Run Options** dialog box, the flight paths will be truncated (or extended as appropriate) to the study boundary for performance, fuel burn, emissions, and noise computations. Performance, noise, and emissions results will only be available for air operations that have at least one track point within the boundary.

AEDT 2a defines a study boundary as a geospatial boundary around a modeling area. A study boundary is not required in AEDT 2a, but when activated, a study boundary truncates (or extends) the flight paths within the boundary, which in turn affect the performance, fuel burn, emissions, and noise computations for the aircraft operations on those affected flight paths. In AEDT 2a, a study boundary must be created and/or modified through the ASIF, not through the GUI. See the ASIF Reference Guide for more detailed information on the ASIF.

When there is an altitude cutoff, noise above the altitude cutoff is not computed. The following matrix describes how the model responds to various boundary, profile/track altitude control, and study altitude cutoff settings when this Run Option is checked.

<table>
<thead>
<tr>
<th></th>
<th>No Controls</th>
<th>With Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Boundary</td>
<td>• No altitude cutoff: all profiles/tracks are flown as defined</td>
<td>Controls are followed and when the controls end, the flight stops.</td>
</tr>
<tr>
<td></td>
<td>• With altitude cutoff: all profiles/tracks have a node where performance passes through the cutoff altitude</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cruise altitude – defined but not used, null for helicopters</td>
<td></td>
</tr>
<tr>
<td>With Boundary</td>
<td>• No altitude cutoff:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Departures or arrivals are vertically extended to cruise altitude and horizontally extended to the boundary.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Overflights are horizontally extended to the boundary at both ends.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• With altitude cutoff: same as no altitude cutoff, except there are nodes wherever the performance passes through the altitude cutoff. Noise is not computed at segments above the altitude cutoff.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cruise altitude:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Above: fly level for the last control, extending to boundary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Below: fly to cruise and level, extending to boundary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Overflights extend level in both directions (ignoring cruise altitude)</td>
<td></td>
</tr>
</tbody>
</table>

When the Truncate and/or Extend Flight Paths to Study Boundary option is selected in the **Run Options** dialog box, and the cruise altitude exceeds the BADA aircraft’s maximum operating altitude, the maximum operating altitude is used for cruise. If altitude controls have been defined, the maximum operating altitude will not be used and the flight will not be processed.

When the Truncate and/or Extend Flight Paths to Study Boundary feature is selected in the **Run Options** dialog box, it is recommended to only use sensor path trajectory data for
intra-study flights. For more information on intra-study flights and how to import sensor
path trajectory data into the study, see the ASIF Reference Guide.

7.2 Run with Distributed Processing

OPTIONAL

In AEDT, running jobs on a single computer is the default processing mode. It is optional to run jobs with
distributed processing on multiple computers. The AEDT client and remote machines must be
configured to run with distributed processing, see Section 2.2 for configuration instructions. After
configuration is complete, follow the steps below to setup and run a job with distributed processing.

Terrain, Weather, and Population Files

1. Terrain and Weather Files: If a study references terrain and/or weather files, the necessary files
must be placed on all remote servers in the same location specified in the File Paths dialog box on
AEDT client. The specified file location must be exactly the same for all remote servers. See sections
5.1.4 and 5.1.5 for instructions on defining file path locations.
2. Population Data: If a study includes population data, the necessary files must be imported into the
AEDT client as described in Appendix E before running the study. It is not necessary to place these
files on the remote machines.

7.2.1 Identify Remote Taskmaster Machines for Distributed Processing

1. From the menu bar select File, Distributed Processing Setup (Figure 7-3).
2. To add a remote machine to distributed processing, enter the desired machine name or IP address
in the Machine Name field and check the Use checkbox. Click Apply. The Online and Processing
checkboxes will update automatically.
3. To remove a machine from distributed processing, delete the machine name from the Machine
Name field, then click Apply.
4. Select a machine name from the list and click Get Details to test the connection to the machine.
5. Click Advanced to open the TmService Manager (Advanced) dialog box (Figure 7-4). The Visible
Machines list displays computers and their IP addresses that are accessible to the local machine over
the network.
 a. To determine whether TmService is available on any of the machines in the list, select one or
 more entries and click Detect TmService.
 b. The machine name will be displayed in either green or red font, and the status will be displayed
 next to it.
 - Green (ONLINE BUSY) indicates that TmService is currently processing on the machine and is
 not available to be used.
 - Green (ONLINE NOT BUSY) indicates that TmService is available on the machine.
 - Red (NOT ONLINE) indicates that TmService is not available as a Windows Service on the
 machine. It could mean that TmService is not installed on the machine, or that it was
 stopped or paused.
 c. Click OK to close the dialog box.
6. Click OK to apply changes and close the dialog box. Click Apply to apply changes and keep the dialog
box open. Click Cancel to discard changes and close the dialog box.
Errors detected by TmService are reported back to the AEDT client and are logged to files on the AEDT client so all information pertaining to a study is in a central location; see Section 6.5 for Error Log information. However, if there is a communication error such that TmService cannot deliver information back to the AEDT client, TmService logs information to its local AEDT_TMService_log.txt files on the server.

7.2.2 Enable/Disable Distributed Processing

In the TmService Manager dialog box (Figure 7-3), check the Use Distributed Processing when Running Jobs checkbox. AEDT will run jobs in distributed processing mode when the Run button is clicked in the Jobs dialog box. If not checked, processing on a single computer will be the default processing method for all job runs.
7.3 Create Job

In AEDT 2a, a job enables a user to run a given case or cases in different ways without altering the cases themselves.

The archival nature of the study in the AEDT 2a system will require, under certain conditions, database maintenance of the record content for results storage. These event-based (operation-based) results for the data in the results archive can be reused in accumulating metrics for output reports of interest.

In many cases, events (operations) may be repeated in different cases or scenarios, provided the input parameters forming a given event are the same. The AEDT 2a system determines if two results are redundant and therefore need only be saved once. This is a significant step in improving computational efficiency for many types of studies. When a job which reused results completes running, AEDT displays the message: "Job processing complete with reused results".

To setup and run a job:
1. From the Run menu, click Start Run... (Figure 7-5) to open the Jobs dialog box (Figure 7-6). The top of the Jobs dialog box provides summary information for each job in the study, including the job #, scenario name, cases, receptor sets, run option, run job (yes/no), and status. The user can modify job information upon selection of a particular Job.

![Figure 7-5 Run Menu](image-url)
2. Add jobs
 a. Click the *Add Job* button to add a new job, and the *Job – Select Scenarios/Cases* dialog box will open (Figure 7-7).
 b. Select the scenarios/cases of interest. Aircraft refers to the case type; selecting aircraft will include all cases within that scenario and case type in the job.
 c. Click the *OK* button to accept the selections and close the dialog box, or click the *Cancel* button to discard the action.
3. Click on the job of interest in the Jobs list and follow steps 4 to 9 to setup or edit a job that has not been processed.

4. Apply available receptor sets to the job (see Section 5.6.2 to setup receptor sets).
 - Select an Available Receptor Set and click Add to include it in the job receptor sets.
 - Select a Job Receptor Set and click Remove to remove it from the job.

5. Define the persistence detail for each job receptor set by selecting the job receptor set:
 a. Select a Noise Result Detail from the drop-down menu (None, Case, or Event).
 - This selection controls whether noise data are saved to the study database, which is required to generate contours.
 - When set to None, no data will be available for contours.
 - When set to Case, case level noise accumulations will be available for contours.
 - When set to Event, individual flight level noise data and case level noise accumulations are stored in the study database. Only the case level noise accumulations will be available for contours.

 Individual flight level noise data require a significant amount of space in the database, and will affect run time.

 In AEDT 2a, setting the noise result detail to None will produce the same results as setting the noise result detail to Case. Results will be available on the case level.

 Annualization contours are constructed from the database using case level noise accumulations across a scenario.
b. Select an *Emissions Result Detail* from the drop-down menu (*None, Case, Event, or Segment*).
 - This selection controls the level of emissions detail that is stored in the study database.
 - When set to *None*, no emissions data are saved in the database and no data are available for emissions reports.
 - When set to *Case*, case level emissions accumulations are stored in the study database.
 - When set to *Event*, individual flight level emissions data and case level emissions accumulations are stored in the study database.
 - When set to *Segment*, detailed segment emissions data, individual flight level emissions data and case level emissions accumulations are all stored in the study database.

 In AEDT 2a, setting the emissions result detail to None will produce the same results as setting the emissions result detail to Case. Results will be available on the case level.

 Noise data are not computed if run performance only is selected when defining run options.

 c. Select a *Performance Result Detail* from the drop-down menu (*None or Event*).
 - This selection controls whether the individual flight level performance result details are saved to the study database.
 - When set to *None*, individual flight level performance result details are not saved.
 - When set to *Event*, individual flight level performance result details are saved and are available for reporting.

 Annualization is not permitted if run performance only is selected when defining run options.

6. Select a *Run Option* from the drop-down menu (see Section 7.1 on run options).
7. Select an *Annualization* from the drop-down menu (see Section 6.1 on annualizations).

8. For each job in the *Jobs* list, the *Run this Job* box must be checked in order to run the job.

7.4 Run Job

7.4.1 Run Job in the AEDT GUI

To run a job:
1. From the *Run* menu, click *Start Run...* to open the *Jobs* dialog box.
2. Click *Run* to run the jobs. Click *Apply* to apply changes and keep the dialog box open. Click *Close* to save and close the dialog box.

Jobs may display a status of idle, processing, incomplete, complete, or invalid.
- Idle – the job has not been run
- Processing – the job is currently running
- Incomplete – the job has run in part but has not completed; jobs with an incomplete status will resume running after the last completed case when the run is reinitiated
- Complete – the job has finished running
• Invalid – a setting associated with a completed job has been changed, i.e. a component of the run option associated with the job, and the job should be rerun

The status in the Jobs dialog box will not always update to idle when a job is running. Do not run the same job twice.

The progress bar may not advance in the Processing Jobs Status dialog box; the case names will update.

Running reports or jobs, or importing the ASIF can cause the AEDT application to go to the background. Click on the AEDT application on the Windows Taskbar at bottom of the screen to bring AEDT back to the foreground.

It is not recommended to change any settings associated to a job while it is running.

In AEDT 2a, jobs will save upon exiting the program and the change will be reflected in the last modified date field in the Load Study dialog box.

AEDT has the ability to reuse previously calculated results when running a new job. The smallest unit of results that can be reused for noise and emissions is a set of air operations in a case. The smallest unit of results that can be reused for performance results is on the event level.

If the computer goes into sleep mode while processing a job, the AEDT 2a application may quit, but appear to continue processing in the task manager. It is recommended to cancel the process in the task manager, reopen AEDT, and check the status of the job.

To view persistence detail of a completed job, select the desired job, then select the job receptor set of interest.

If an air operation has been assigned a stage length for which the associated aircraft has no profile available, the profile for the next highest stage length (among available profiles) is used instead, and a warning message is included in the log file.

Processing time for a job or case in AEDT is directly related to the total number of segments processed multiplied by the number of receptor points. Please be aware that the number of segments in a track can vary widely.

Terrain Troubleshooting

A number of exceptions could occur if terrain files are not setup properly. Possible exceptions and fixes are listed below:

Exception: Unable to initialize terrain. <<Folder_Name>> folder doesn’t exist.
Fix: Check the terrain file path location and update to the appropriate file path.
See section 5.1.4 for more information on terrain file path locations.

Exception: Unable to initialize terrain. No terrain data layers were found.
Fix: Check the defined terrain file path location and either move terrain data to that directory or update the terrain file path to the appropriate directory. See section 5.1.4 for more information on terrain file path locations.

Exception: Unable to initialize terrain. More than one spatial reference type was associated with the terrain data.
OR
Exception: Unable to initialize terrain. No spatial reference type was associated with the terrain data.
OR
Exception: Unable to initialize terrain. Terrain data spatial reference is not defined.
OR
Exception: Unable to initialize terrain. Terrain data only supports GCS_WGS_1984 and GCS_North_American_1983 spatial references.
Fix: Update the terrain folder contents so that it only contains one type of spatial reference type which is either GCS_WGS_1984 or GCS_North_American_1983. One way to do this is to download terrain directly from USGS as described in Appendix F.

7.4.2 Reset Job
To reset job results:
1. From the *Run* menu, click *Start Run...* to open the *Jobs* dialog box.
2. Select the job of interest.
3. Click the *Reset Job* button to mark the results as invalid.

Before resetting results, close all dialog boxes related to change analysis and impact evaluation, including reports.

Users should regularly remove invalid results from the Study database by selecting *Results, Clear Invalid Results* from the menu bar. See Section 8.7.

When the completed job results have been reset, the change analysis and impact sets associated with that job will be deleted.

7.4.3 Remove Job
To remove a job:
1. Select the job of interest.
2. Click the *Remove Job* button to remove the job.
8 Results

The results reports are available after the user runs a job.

8.1 Flight Performance Information

The flight performance information shows the flight performance of the operations for a user-specified case.

If the user views a large number of results in flight performance, the user may encounter an error message indicating that the application has run out of memory. Exit the application and restart, after which the user should be able to resume viewing performance results.

To access the Flight Performance Detail dialog box, from the menu bar select Results, Flight Performance Information (Figure 8-1).

![Figure 8-1 Flight Performance Detail Dialog Box](image-url)
8.1.1 View Flight Performance Report

The flight performance report provides detailed information for a user-specified case. This report can be viewed and stored external to the AEDT software, in a user-defined location.

To run a flight performance report:
1. In the Flight Performance Detail dialog box (Figure 8-1), click the View Report button.
2. The Flight Performance Report dialog box will open (Figure 8-2).
3. Select the Scenario, Job, and Case of interest from the drop-down menus.
4. Navigate to the desired folder to store the report by clicking the Browse button, or accept the default location that appears in the File Name field.
5. Enter a unique File Name or accept the default file name, report_flight_perf.txt.
6. Click the Run Report button.
7. A message will appear after the report generates stating the location of the file. See Appendix H for a snapshot of an example report.
8. Units in the flight performance report:
 - unit-x, unit-y, unit-z = unit vector of the flight segment computed as a difference from the prior segment endpoint
 - z-pos AFE = feet
 - segment length = feet
 - grnd-trk distance = feet
 - speed = knots (ground speed)
 - delta speed = knots
 - net-corr thrust = pounds (per engine)
 - noise thrust = pounds (per engine)
 - delta thrust = pounds (per engine)
 - bank angle = angle in degrees
 - duratn = seconds
 - AAD fuel-burn = kg (per airframe)

![Figure 8-2 Flight Performance Report Dialog Box](image-url)
The flight performance report may not be able to generate results for a flight with a significantly large number of segments. This most commonly occurs with operations on tracks defined by sensor path data. If this occurs, an exception will appear during the generation of the flight performance report. It will indicate that an error has occurred and the message will begin with the following two lines:

An error has occurred in Report.GenerateReport().
FAA.AEE.AEDT.DataAccessModule.Exceptions.DamException: Exception type of 'System.OutOfMemoryException' was thrown.

Reducing the page size of the results iterator may allow for the report to be generated. This can be done in the AEDT configuration file.
1. Close out of AEDT.
2. Open the configuration file C:\AEDT\FAA.AEE.AEDT.AEDTApp.exe.config.
3. Locate the ResultsIteratorPageSize section.
 <add key ="ResultsIteratorPageSize" value ="1000"/>
4. Reduce the number of pages.
 <add key ="ResultsIteratorPageSize" value ="10"/>
5. Locate the PerformanceResultsPageSize section.
 <add key="PerformanceResultsPageSize" value="5000"/>
6. Reduce the number of pages.
 <add key="PerformanceResultsPageSize" value="100"/>
7. Save the changes and close out of the configuration file.

The following error may occur when generating the flight performance report for a study with 1,500,000 or more performance results:

Timeout expired. The timeout period elapsed prior to completion of the operation or the server is not responding.

It is recommended to do one or more of the following:
1. Clear invalid results (see Section 8.7 on clearing invalid results)
2. Remove unnecessary jobs containing performance results.
3. Create multiple studies to run portions of the job.

For the terminal-area portion of sensor path results, speeds are based on standard ANP procedures rather than the speeds given in the sensor path.

8.1.2 View Flight Performance Map
To view a flight performance on map:
1. In the Flight Performance Detail dialog box, select the Job of interest.
2. Select the Case, Aircraft/Engine/Engine Mod, and Operation Type.
3. Click the View Map button.
4. The dialog box will close and the flight performance data will appear in the Airport Geometry.

In the absence of altitude controls (defined in the ASIF, see the ASIF Reference Guide for more information on the ASIF) on the corresponding track, profiles are flown in their entirety, regardless of track length. In situations where profile length exceeds track length, the track is extended along its final course for the balance of the flight path. However, if altitude controls are present in the track, the profile is often abandoned in order to satisfy such constraints. In these cases, the profile no longer drives the simulation, and flight path ends with the final constrained track point.

Speed controls are not used and are ignored in AEDT 2a.

If the flight performance map does not appear in the Airport Geometry, navigate to the relevant airport layout in the Study Hierarchy.

The user can display more than one set of flight performance data in the Airport Geometry. Toggle the display and select colors through the Tree Browser.

Flight paths generated from the Results menu, Flight Performance Information, and ground tracks that can be viewed from the View menu, Tracks Selection dialog box, may appear as different lengths when viewed in the Airport Geometry.

- Results menu, Flight Performance Information “flight paths” can only be generated after a job has been run. The flight paths display the calculated flight path based on the 3D vertical flight profile projected on the ground.
- View menu, Tracks Selection “ground tracks” show a 2D line defined by the track data input with the study and can be viewed at any time.
8.1.3 View Flight Performance Graph
To view a flight performance graph:
1. From the Flight Performance Detail dialog box, select a Job from the drop-down menu.
2. Select a Case, Aircraft/Engine/Engine Mod, and Operation Type.
3. Click the View Graph button.
4. The graph will appear in the same window.
5. Select a Profile category from the drop-down menu, and then select an operation ID from the Operations legend to the right of the graph.

The values in the Operations legend consists of <Aircraft Type ID> / <Engine Mod>_<Air Operation ID>. Air Operation ID is a generically generated identification number derived from the operations in the Aircraft Operations dialog box.

The flight performance graph does not show the first trajectory segment. If an operation consists of only one segment (e.g. a one-segment overflight), the graph will display a single point.

6. Select the X-Axis and Y-Axis settings (Time, Segment Cumulative Track Distance, Altitude Above Field Elevation, Altitude Above Mean Sea Level, Weight, Net Corrected Thrust, Noise Thrust, or Speed).

For elevation (altitude above field elevation, altitude above mean sea level) the only meaningful option is to select altitude above field elevation. Selecting altitude above mean sea level appears the same as altitude above field elevation.

7. Select the X-Unit and Y-Unit.
8. Click the Close button to exit the dialog box.

8.2 Noise Graph
To view a noise graph:
1. From the menu bar select Results, Noise Graph. The Noise Power Distance Graph dialog box will open (Figure 8-3).
2. Select a Noise ID from the drop-down menu.
3. Select the noise metric(s) of interest from the legend to the right of the graph.
4. Click the Close button to exit the dialog box.
8.3 Change Analysis and Impact Evaluation

NOISE

In AEDT 2a, the change analysis feature compares day-night-average (DNL) noise levels between two scenarios e.g. baseline and alternative at specified locations. In conjunction with impact set definitions and the results of the change analysis, the impact evaluation feature supports the investigation of noise level based on operation and track assignment.

8.3.1 Color Coding

Color coding is utilized in viewing changes in noise levels between two scenarios in an impact graph to define change zones and in viewing receptors on the *Airport Geometry*. Color coding visually represents an increase or decrease in noise level between two scenarios e.g. baseline scenario and alternative scenario.

Table 8-1 shows the criteria for the color coding. The warm colors (red, orange, and yellow) represent an increase in noise level from the baseline scenario to the alternative scenario. The cool colors (purple, blue, and green) represent a decrease in noise level from the baseline to the alternative scenario. No color represents no change in noise level from the baseline scenario to the alternative scenario.
Table 8-1 Color Coding Based on Change in DNL

<table>
<thead>
<tr>
<th>Baseline DNL</th>
<th>Change in Noise Level from Baseline to Alternative</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 45 dB</td>
<td>Increase: No color, Decrease: No color</td>
<td>Air Traffic Noise Screening Procedure EECP EIS</td>
</tr>
<tr>
<td>45-<50 dB</td>
<td>Increase: + 5 dB (yellow), Decrease: - 5 dB (purple)</td>
<td>Air Traffic Noise Screening Procedure EECP EIS</td>
</tr>
<tr>
<td>50-<55 dB</td>
<td>Increase: + 3 dB (orange), Decrease: - 3 dB (blue)</td>
<td>FICON</td>
</tr>
<tr>
<td>55-<60 dB</td>
<td>Increase: + 1.5 dB (red), Decrease: - 1.5 dB (green)</td>
<td>FAA Order 1050.1E and FICON</td>
</tr>
<tr>
<td>> 65 dB</td>
<td>Increase: + 1.5 dB (red), Decrease: - 1.5 dB (green)</td>
<td>FAA Order 1050.1E and FICON</td>
</tr>
</tbody>
</table>

8.3.2 Impact Set

Impact sets are defined to compare noise levels between two different scenarios. The impact data is tabulated and displayed in three forms described in Section 8.3.2.1 Impact Set Reports.

An impact set requires:
- Two different annualizations run with the same receptor set.
- Jobs must be run with the DNL noise metric.
- Jobs used must show a complete status in the Jobs dialog box.

To create an impact set:
1. From the menu bar select Results, Change Analysis. The Change Analysis & Impact Evaluation dialog box will open (Figure 8-4).
2. Click the Create New Impact Set button. A new Impact Set Creation dialog box will open (Figure 8-5).

An impact set can be created with jobs containing invalid results. It is recommended to check the status and rerun jobs with invalid results with desired settings before creating an impact set.

3. Select the Baseline Annualization Job and Alternative Annualization Job from the drop-down menus.
4. Enter an Impact Set Name.
5. Click Create to create the impact set. Click Cancel to discard the action.
6. The color coded receptor points will display on the Airport Geometry.
8.3.2.1 Impact Set Reports

Impact set reports allow the user to generate graphical or tabular noise results for an impact set.

To generate impact set reports:
1. From the menu bar select Results, Change Analysis.
2. Select an Impact Set from the list.
3. Right-click the Impact Set, select Impact Set Reports, then select Impact Set Graph or Impact Set Table (Figure 8-6).
4. The report (graph or table) will appear in a new dialog box.

Figure 8-4 Change Analysis & Impact Evaluation Dialog Box

Figure 8-5 Impact Set Creation Dialog Box
8.3.2.1.1 Impact Set Graph

The impact graph shows detailed comparative data for receptors exposed to specific ranges of noise. Data are color-coded according to the scoring criteria discussed in Section 8.3.1. The Change Summary table provides a summary of the number of receptors or the population count that has either entered or exited the 65 dB or greater criteria for a comparison of two scenarios.

To view an impact set graph:
1. From the menu bar select Results, Change Analysis.
2. Select an Impact Set from the list or click Create New Impact Set (see Section 8.3.2).
3. Right-click the Impact Set, select Impact Set Reports, Impact Set Graph. A new dialog box will open (Figure 8-7).
4. If the selected jobs for impact evaluation were run with population receptors, then select either Show Population Counts or Show Internal Points. If the jobs were run with grid receptors, then the impact report displays grid points.
5. The impact set graph (Figure 8-7) illustrates either the population or number of receptors that fall into each of the categories described in Section 8.3.1.

To read an impact set graph:
1. By reading the graph as a matrix, the user can determine the population or number of receptors that have changed category between the baseline scenario and the alternative scenario.
2. The color coding of warm and cool colors allows easy reference when there has been a reduction of noise or an increase in noise (see Section 8.3.1).
3. Example (Figure 8-7):
 a. Locate the circled area on the graph.
 b. Trace up to the Baseline DNL (dB) noise level ranges. For this case, the range is 60-65 dB.
 c. Trace over to the Alternative DNL (dB) noise level ranges. For this case, the range is 65-70 dB.
 d. In this example, the circled receptor has changed from 60-65 dB to 65-70 dB from the baseline to alternative scenarios.
The impact set table shows the population exposed to specific ranges of noise for both the baseline and alternative scenarios. By considering that each column corresponds to an exposure range under the baseline scenario and each row corresponds to an exposure range under the alternative scenario, changes in distribution of exposures between the baseline and alternative scenarios can be viewed.

The Change Summary table provides a summary of the number of receptors or the population count that has either entered or exited the 65 dB or greater criteria for a comparison of two scenarios.

To view an impact set table:
1. From the menu bar select Results, Change Analysis.
2. Select an Impact Set from the list or click Create New Impact Set (see Section 8.3).
3. Right-click the Impact Set, select Impact Set Reports, Impact Set Table. A new dialog box will open (Figure 8-8).
4. If the selected jobs for impact evaluation were run with population receptors, then select either Show Population Counts or Show Internal Points. If the jobs were run with grid receptors, then the impact report displays grid points.
5. The green color in the impact set table represents a decrease in noise level from the baseline to the alternative, while red shows an increase in the noise level from the baseline to the alternative.
8.3.3 Change Analysis

The change analysis feature compares the change in day-night-average (DNL) noise levels between two scenarios at specified locations. Magnitude and location of change can be viewed within impact set reports and on the airport geometry.

To run a change analysis:

1. Right-click the impact set of interest to specify options for computing a change analysis. The impact set of interest must be right-clicked for each of the steps outlined in a - d below.
 a. Select Display on Map to show the impact set receptor points on the Airport Geometry. Adjust the zoom in the Airport Geometry to view the color coded receptor points.
 b. A change zone defines the area of interest for the change analysis. It can be created either from the map or manually.
 i. Select Create Change Zone (from Map) and select a change zone color: Red, Orange, Yellow, Green, Blue, or Purple. The colors correspond to the color coding described in Section 8.3.1.
 a) Select a change zone color based on the colors of the receptor points viewed in step 1a (e.g., select the color red if it is desired to create a change zone and further investigate the noise levels around the red receptor points).
 b) Click and drag the cursor to select an area on the map containing receptor points with the color matching the change zone color in step i.
 c) A Change Zone Information dialog box will open (Figure 8-9) with information populated on the zone name, center latitude, center longitude, width (nmi), height (nmi), and zone color. Only the zone name can be edited.

Figure 8-8 Impact Set Table
d) Click Create to create the change zone. Click Cancel to discard the action. The new change zone name will appear under the selected impact set.

ii. Select Create Change Zone (Manual). A Change Zone Information dialog box will open (Figure 8-9).
 a) Enter information for Zone Name, Center Altitude, Center Longitude, Width (nmi), Height (nmi), and select Zone Color.
 b) Click Create to create the change zone. Click Cancel to discard the action. The new change zone name will appear under the selected impact set.

c. Select Create/Edit Case Associations. A Case Assoc Editor dialog box will open (Figure 8-10).
 i. Case associations are setup between the baseline (left) and alternative (right) lists of cases. Change the alignment of cases by using the arrows below the lists to move cases up or down.
 ii. Click Save to save changes. Click Reset to discard changes. Click Cancel to discard changes and close the dialog box. Click Defaults to reset the baseline and alternative lists to the default order.

2. Right-click the change zone of interest and select Show/Update ChangeZone Info to open the Change Zone Information dialog box (Figure 8-9).

3. To compute change analysis, select the change zone of interest and click Run Change Analysis. The results will display in the Change Analysis Results panel.

4. Once the change analysis has been run, the Save Change Report button will be active.
 a. Click the Save Change Report button.
 b. Navigate to the desired folder to store the report or accept the default location.

5. Click Close to close the Change Analysis & Impact Evaluation dialog box.

The change analysis color coding (red, orange, yellow, green, blue, or purple) corresponds to the color coding of the impact graph, described in Section 8.3.1. The cool colors (purple, blue, and green) show decreases in noise level for the alternative, while the warm colors (red, orange, and yellow) show increases in the noise level for the alternative.
8.3.3.1 Change Analysis Results

To view change analysis results:
1. From the menu bar select Results, Change Analysis.
2. In the Change Analysis tab, Impact Sets panel, select the change zone of interest that has run change analysis.
3. View the results in the Change Analysis Results panel.
Each section of the change analysis report is described below:

- **Change Zone Definition**
 The change zone name, center latitude and longitude, width and height (in nautical miles), and the zone type or color are displayed.

- **Receptors in Change Zone**
 This section is labeled *Grid Receptors in Change Zone* if the impact set was created with jobs run with grid receptors. This section is labeled *Population Receptors in Change Zone* if the impact set was created with jobs run with population receptors.
 - All of the grid receptors of the same color as the change zone that are contained within the boundary of the change zone are listed. The table displays the receptor ID, latitude, longitude, and baseline and alternative noise values.
 - All of the population receptors of the same color as the change zone that are contained within the boundary of the change zone are listed. The table displays the receptor ID, latitude, longitude, total population count, and baseline and alternative noise values.

 If no receptors are displayed in this section, then no receptor points were captured in the change zone area selection that matched the change zone color; therefore, the change analysis is not relevant for that change zone.

- **Case Associations**
 The baseline and alternative case associations that were created in step 1.c are listed with annualization weighting and an assigned association number. The association number is referenced
throughout the remaining change analysis results representing the pair of cases defined in the association.

- **Ranked Case Associations by Contributions**
 This section contains one or more tables, depending on analysis results, that display the case associations in order of most change within the change zone. Each table displays:
 - A single case association with an average percent change\(^4\) from the baseline to alternative scenarios;
 - The lowest and highest percent change from the baseline to the alternative scenarios of any individual receptor within the change zone; and
 - The number of affected receptors (hits) and the total number of receptors (max) in the change zone.
 The number of unaffected receptor points is reported at the end of this section.

- **Groups**
 Groups are created based on case associations with similar causes of change between the baseline and alternative. Each group contains two tables. The first table contains the association number(s) and the case names for the baseline and alternative cases included in the association(s). The second table lists the receptor number(s) and ID(s) that the associations in the first table correspond to.
 - If only one group exists, the change in noise level for the change zone is caused solely by the case associations listed under the group for all listed receptor points within the change zone.
 - If more than one group exists, the change in noise level for the change zone may have different case associations contributing the most change to different receptor points within the change zone.

- **Summary Percent Raw Change Scores**
 The percent change for each case association is given at each case association. Columns containing bold numbers are considered to be notable case associations for the given receptors. The notable case associations are divided into groups and appear in the groups section of the change analysis results report. The mean percent change is tabulated across all receptors within the case association. The mean percent change for groups is displayed in parentheses for each case association.

- **Main Statistics Tables**
 This section contains DNL and raw noise levels from the change analysis computation. A table is given for each receptor in the change zone. The data are presented by case association for:
 - DNL noise levels for each scenario and the change in noise level between the two scenarios;
 - Raw (unweighted) data for each scenario, the change in raw noise level between the two scenarios and the percent raw change.

\(^4\) The percent change is the percent contribution of raw noise values \([10^{(DNL/10)}]\) averaged over the number of receptors in the change zone.
Additionally, the mean percent change, standard deviation (\(\sigma/2\)), and percent change threshold for the raw noise values are computed and displayed in the table.

8.3.4 Impact Evaluation

The impact evaluation capability in AEDT 2a allows the user to model different scenarios with the change analysis feature, with the goal of lessening significant noise impacts discovered by moving operations to different tracks. The impact evaluation capability can compute detailed noise information for each flight/operation in a case over an impact set (a collection of significantly impacted points derived in change analysis). This detailed information shows the user which flights/operations in the case are contributing the most noise. Impact evaluation allows the user to switch operations to new tracks in order to reduce noise in heavily impacted areas. Different comparisons can be created and analyzed.

![A change analysis must be completed before applying impact evaluation.](image)

N-80

When running detailed noise, it is recommended to limit the number of operations per case to less than 30,000 operations.

![When running detailed noise, it is recommended to limit the number of operations per case to less than 30,000 operations.](image)

N-81

To access impact evaluation:

1. From the menu bar select Results, Change Analysis to open the Change Analysis & Impact Evaluation dialog box.
2. Select the Impact Evaluation tab.

 The operations and tracks panels in the Change Analysis & Impact Evaluation dialog box can be resized by sliding the divider between the panels. The order of the columns in both the operations and tracks panels can be changed by dragging the column headings to the desired location.

N-82

To load data for impact evaluation analyses:

1. Select an Impact Set and a Change Zone from the drop-down menus (Figure 8-12).
2. If change analysis has been run on the selected change zone, the resulting cases will be displayed in the alternative cases panel.
3. To run detailed noise, select a case from the Alternative Cases panel and click the Run Detailed Noise button. Repeat for additional cases.
 - The numbers listed before the case name in the alternative cases panel represent the total case percent contribution of noise in the impact set for the specified change zone.
 - The percent contribution in the operations panel represents the contribution of noise from each operation in the case.
 - Cases for which detailed noise have not been run will be shaded grey in the alternative cases panel, and results will be displayed only in the tracks panel.
 - Cases for which detailed noise have been run will appear in black font in the alternative cases panel, and results will be displayed in both the operations and tracks panels.
4. Select one or more cases from the Alternative Cases panel to view results in the Operations and Tracks panels. To select multiple cases, hold down the Ctrl key and select all desired cases.
5. To display tracks graphically in the *Airport Geometry*, right-click within the *Tracks* panel and select *Display Tracks on Map*.
 - To confirm which data correspond to each graphical track in the *Airport Geometry*, select any track(s) in the *Tracks* panel. The corresponding graphical track(s) in the *Airport Geometry* will be highlighted.

The highlight feature is available for point-based tracks only. This feature is not available for vector tracks. Both types of tracks can be viewed in the *Airport Geometry*.

To re-assign an operation from one track to another:
1. From the *Operations* panel, select the operation to be re-assigned (view the *Track Name* column to see the track to which it was originally assigned).
2. From the *Tracks* panel, select the track to which the operation will be reassigned.
3. Click the *ReAssign Operations* button located beneath the *Operations* panel.
4. Confirm the re-assignment by viewing the *New Track* column in the *Operations* panel and the *New Ops* column in the *Tracks* panel.
5. To reset operations that have been re-assigned to new tracks, click the *Reset Operations* button.
6. Save the changes as a new impact evaluation session by entering a name in the *Session* field, and clicking the *Save* button.

To create an impact evaluation session job:
1. If an impact evaluation session is not already loaded, load a previously saved session by selecting the desired session name from the *Session* drop-down menu.
2. If any modifications are made to a previously saved session, save as a new session.
3. To create a job out of the session, click the Create Session Job button.
4. A message will appear confirming that the session job was created (Figure 8-13).

![Impact Evaluation Session Job Created Message Box](image)

Figure 8-13 Impact Evaluation Session Job Created Message Box

To save an impact evaluation session report:
1. If an impact evaluation session is not already loaded, load a previously saved session by selecting the desired session name from the Session drop-down menu.
2. To save an impact evaluation session report, click the Save Report button.
3. Navigate to the desired folder to store the report.
4. Enter a unique File name or accept the default name.
5. Click the Save button.

AEDT will create a new receptor set with the prefix ImpEval_ which contains the receptor points of the change zone (i.e. receptor points of certain color category that were used to create the change zone).

To run an impact evaluation session job:
1. From the menu bar select Run, Start Run to display the Jobs dialog box.
2. Select the impact evaluation session job.
 - The session job name, which is listed in the scenario column, will contain the prefix “ImpEvalScenario_”, followed by the impact evaluation session name.
3. The appropriate impact evaluation annualization will automatically populate, do not change the annualization setting.
 - The annualization name will contain the prefix “ImpEvalAnnualization_”, followed by the impact evaluation session name.
4. Click the Run button.

To view impact evaluation results:
1. After the running the session job, select Results, Change Analysis from the menu bar to open the Change Analysis & Impact Evaluation dialog box.
2. Create a new impact set for the impact evaluation job. Follow the instructions in Section 8.3.2 to complete the change analysis and include the modifications below.
 a. In the Baseline Annualization Job drop-down menu, select the same Job ID and Baseline Annualization as the impact set that was used to create the session job.
 b. In the Alternative Annualization Job drop-down menu, select the Job ID with the corresponding impact evaluation annualization. The impact evaluation annualization will contain the prefix “ImpEvalAnnualization_”, followed by the impact evaluation session name.
3. Compare the results of impact evaluation with the original impact set by comparing each impact set report. Right-click the impact set and select \textit{Impact Set Reports} to view impact set reports. See Section 8.3.2.1 for more information on impact set reports.

\section*{8.4 Contours}

Contours in AEDT 2a are used to perform an analysis of an area (often in the vicinity of an airport) encompassed by a graphical plot consisting of a smooth curve that is statistically regressed through points of equal noise level or time duration.

\begin{itemize}
 \item \textbf{NOISE}
 \begin{itemize}
 \item Scenario-level noise contours can only be viewed for scenarios with annualization. Case-level noise contours can be viewed without annualization. \hfill W-59
 \item Noise contours can only be generated from jobs run with grid receptors and not with population receptors. \hfill W-60
 \item Grid spacing must be the same in the x and y directions in order for contours to generate. \hfill W-61
 \item It is not recommended to generate contours covering more than 100 miles in any direction. \hfill W-62
 \item Generating contour graphic in Airport Geometry may take longer than expected. \hfill W-63
 \end{itemize}
\end{itemize}

\noindent To set up and view contour graphics in AEDT:

1. From the menu bar select \textit{Results, Contours} to open the \textit{Contour Setup} dialog box (Figure 8-14).
2. Choose a \textit{Scenario, Completed Job, Metric, and Annualization} (if appropriate).
3. To view a contour graphic:
 \begin{itemize}
 \item a. From the \textit{Contour Setup} dialog box select a \textit{Scenario, Completed Job, Metric, and Annualization} (if appropriate). The \textit{View Contour Graphic} button will be active.
 \item b. Select the \textit{Min, Max, and Int} (Interval) parameters and the \textit{Color} that contours will be represented on the map, or use the default settings.
 \item c. Click the \textit{View Contour Graphic} button.
 \item d. The dialog box will close. The contour graphic will appear in the \textit{Airport Geometry} (Figure 8-15), and a new layer will be added to the \textit{Tree Browser} under the \textit{Noise Contour} category.
 \end{itemize}
4. Click the \textit{Cancel} button to close the dialog box without viewing the contour graphic.

\noindent To render noise contours on a scenario level with events on multiple airports with disjointed receptor sets, create and run individual case-level jobs that associate the appropriate receptor set with each airport and view the contours simultaneously.

\begin{itemize}
 \item Low resolution receptors, either location points or grids, are not commensurate with plotting of contours. \hfill W-64
\end{itemize}
If unexpected contour results appear in the Airport Geometry, it is recommended to clear the Esri cache, clear job results, and re-run the job.

- To clear the Esri cache, close out of AEDT then navigate to C:\AEDT\Data\[<SQL Server Instance>_ <User name>], find the study of interest, and delete the Cache.gdb folder associated with the study of interest.
- To clear job results, open the Run Options dialog box, select the job of interest, and click Reset Job (see Section 7.4).

Turning on receptors and viewing flight performance information on the map can help the user understand what the contours are representing.

- View receptors on the map by selecting an airport layout in the Study Hierarchy and checking the desired Receptors box in the Tree Browser.
- View the flight performance information on the map by selecting from the menu bar Results, Flight Performance Information. In the Flight Performance Detail dialog box, choose the appropriate Job, Case, Aircraft, and Operation Type, and click the View Map button.

If no noise results are available for the selected combination in the Contour Setup dialog box, an informational message will appear.

Figure 8-14 Contour Setup Dialog Box
To view a contour report:
1. In the Tree Browser right-click on the desired noise contour layer under the Noise Contour category, and select Contour Report. The Contour Population and Exposure Report dialog box will open (Figure 8-16).
2. Select Exposure Type (Areas or Populations).
3. When Populations is selected, the Available Population Receptors drop-down menu will be active. Select a population receptor of interest.
4. To save the report, click the Export button.
5. Navigate to the desired folder to store the report or accept the default location.
6. Enter a unique file name or accept the default file name, report_contour.txt.
7. Click Close to close the dialog box.
8.5 Emissions

To view the emissions report:
1. From the menu bar select Results, Emissions Report.
2. In the Emissions Report dialog box (Figure 8-17), select a Job and Case from the drop-down menus.
3. Select the Group by option (Modal Case Summary, Flight Summary, Flight Mode, or Flight Detail).

 The flight detail group by option is only available if the emissions result detail was set to segment in the Jobs dialog box.

4. Select the appropriate PMAD option (None, PMAD, or Annual).
5. Click the Run button to generate the report.
6. Select desired unit from the Units drop-down menu (Grams, Kilograms, Metric Tons, Pounds, or Short Tons) to change the unit in the report.
7. To save the report, click the Export button.
8. Enter a unique file name or accept the default file name, EmissionsReport.csv.
9. A message will appear after the report generates stating the location of the file. Appendix H provides a snapshot of an example report.
The emissions report may not be able to generate results for a flight with a significantly large number of segments. This most commonly occurs with operations on tracks defined by sensor path data. If this occurs, an exception will appear during the generation of the emissions report. It will indicate that an error has occurred and the message will begin with the following two lines:

An error has occurred in Report.GenerateReport().
FAA.AEE.AEDT.DataAccessModule.Exceptions.DamException: Exception type of 'System.OutOfMemoryException' was thrown.

Reducing the page size of the results iterator may allow for the report to be generated. This can be done in the AEDT configuration file.
1. Close out of AEDT.
2. Open the configuration file C:\AEDT\FAA.AEE.AEDT.AEDTApp.exe.config.
3. Locate the ResultsIteratorPageSize section.
 <add key="ResultsIteratorPageSize" value="1000"/>
4. Reduce the number of pages.
 <add key="ResultsIteratorPageSize" value="10"/>
5. Locate the PerformanceResultsPageSize section.
 <add key="PerformanceResultsPageSize" value="5000"/>
6. Reduce the number of pages.
 <add key="PerformanceResultsPageSize" value="100"/>
7. Save the changes and close out of the configuration file.
What is the PMAD option?

- None: No scaling factor – emissions and fuel burn results are representative of an average annual day.
- PMAD: Peak Month Average Day scaling factor (also known as Design Day Ratio).
- Annual: Annual scaling factor (average annual day multiplied by 365 days per year).

Please refer to Appendix I for more information on annual schedules.
8.6 Noise Exposure Report

To view the noise exposure report:

1. From the menu bar select Results, Noise Report.
2. In the Noise Exposure Report dialog box (Figure 8-18) select a Job, Case, and Metric from the drop-down menus.
3. Select an Annualization if appropriate.

The Annualization drop-down menu will not be active when a case-level job is selected.

4. Click the Run button to generate the report.
5. To save the report, click the Export button.
6. Enter a unique file name or accept the default file name, NoiseExposureReport.csv.
7. A message will appear after the report generates stating the location of the file. Appendix H provides a snapshot of an example report.
8. To map the noise results to airport geometry, click the Map to GIS button.
9. The noise results are displayed in the Airport Geometry, and a new layer is added to the Tree Browser under the Noise Level category.

The noise values written to the AEDT 2a contour points report are not given in the same order as the INM standard or detailed DBF files. For example, if an INM standard or detailed grid size is 3 x 3, the points would be output as follows compared to AEDT 2a:

```
INM   AEDT

3  6  9
2  5  8
1  4  7

7  8  8
4  5  6
1  2  3
```

View the noise exposure report in tandem with the receptor set definitions in order to associate the specific location of each point with the noise exposure value in report form.
8.7 Clear Invalid Results

Results marked as invalid can be removed from the study database in the AEDT 2a GUI or with a command-line tool. See Section 7.4.2 Reset Job for instructions on how to mark results as invalid. See Appendix J for more information on the command-line tool named Remove Results.

To remove invalid results in the AEDT 2a GUI:

1. From the menu bar select Results, Clear Invalid Results.
2. The Clear Invalid Results button will be active if there are invalid results. Click the Clear Invalid Results button.
3. Click the Cancel button to close the dialog box.
8.8 Access Output Files

Users can define the location to store output files, or accept the default location of the documents folder. The output files are in .txt, .csv, and Esri-compatible formats as appropriate.

The Microsoft Windows file name and directory definition is limited to 260 characters for all output files.
9 Delete Study

To delete a study:
1. From the menu bar select File, Open Study to access the Load Study dialog box.
2. In the Load Study dialog box, Right-click on the study to delete and select Remove.
3. Click Yes when prompted for confirmation.
4. The Study Name will be removed from the list.
5. Clear the Esri cache of the deleted study. Navigate to C:\AEDT\Data\<SQL Server Instance>_<User name>, find the study of interest, and delete the Cache.gdb folder associated with the study of interest.

Figure 9-1 Load Study Dialog Box – Remove Study
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3CD</td>
<td>Terrain File Format</td>
</tr>
<tr>
<td>AAD</td>
<td>Average Annual Day</td>
</tr>
<tr>
<td>AEDT</td>
<td>Aviation Environmental Design Tool</td>
</tr>
<tr>
<td>AEE</td>
<td>FAA Office of Environment and Energy</td>
</tr>
<tr>
<td>AFE</td>
<td>Above Field Elevation</td>
</tr>
<tr>
<td>AGL</td>
<td>Above Ground Level</td>
</tr>
<tr>
<td>Aircraft Operation</td>
<td>A single flight of an aircraft.</td>
</tr>
<tr>
<td>Altitude</td>
<td>The vertical distance of any particular object from sea level.</td>
</tr>
<tr>
<td>Approach</td>
<td>The 2-D or 3-D path that the aircraft takes as it descends toward an airport for landing. This term is also used to describe the subset of arriving flights at an airport.</td>
</tr>
<tr>
<td>Approached Displaced Threshold</td>
<td>Parameter from the AIRPORTS Database, identifies the displaced threshold for each approach. Displaced Threshold is defined as a spot on the runway that is not either endpoint but that is used as the point for touchdown; this exists due to local restrictions (e.g. noise restrictions, runway strength) that make the actual runway end unsuitable for approaches.</td>
</tr>
<tr>
<td>APP</td>
<td>Approach Operation</td>
</tr>
<tr>
<td>ASIF</td>
<td>AEDT Standard Input File</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design (application program)</td>
</tr>
<tr>
<td>CAEP</td>
<td>Committee for Aviation Environmental Protection. This committee within the International Civil Aviation Organization (ICAO) is responsible for promoting any environmental work that ICAO undertakes. The group includes two working groups on noise reduction and mitigation, three working groups dealing with aircraft emissions, and one support group that provides cost and environmental benefit analyses on noise and aircraft emissions options</td>
</tr>
<tr>
<td>Case</td>
<td>A set of operations assigned to each aircraft or other type of emissions source within a given scenario. Each case is source type specific (Aircraft, GSE, APU, Stationary Sources, Parking Facilities, Roadway, Training Fires), and may contain sub-cases or “child cases”. Each case may have its own weather settings or inherit weather from a parent case or scenario.</td>
</tr>
<tr>
<td>CEXP</td>
<td>C-weighted Sound Exposure Level (multi-event) (noise metric)</td>
</tr>
<tr>
<td>CDNL</td>
<td>C-weighted day, night average sound level (noise metric)</td>
</tr>
<tr>
<td>CNEL</td>
<td>Community Noise Equivalent Level (California) (noise metric)</td>
</tr>
</tbody>
</table>
CO Carbon monoxide
CO₂ Carbon dioxide
Contour A smooth curve or line that is statistically regressed through points of equal noise level of time duration. AEDT can be used to generate viewable contours through the Results tab on the menu bar.
Crossing Height Parameter from the AIRPORTS Database; identifies the height above ground level where the normal glide path crosses the landing threshold for each unique runway end.
DAFIF U.S. Department of Defense Digital Aeronautical Flight Information Files
dB Decibel, a unit of noise level or noise exposure level
DBF dBase IV database file format
deg Degrees (angle)
DEM Digital Elevation Model format that covers both U.S. and International land areas (terrain data format)
Departure The 2-D or 3-D path that the aircraft takes as it ascends from an airport after taking off. This term is also used to describe the subset of flights taking off at an airport.
DEP Departure operation
DLL Dynamic Link Library (supporting software)
DNL Day Night Average Sound Level (noise metric)
DST Daylight Savings Time
DTC Distributed Transaction Coordinator
EDMS Emissions and Dispersion Modeling System. This system is the current FAA-approved model for assessing the air quality impacts of proposed airport development projects. AEDT is being developed to replace this modeling system.
EIS Environmental Impact Statement
Elevation Parameter from the AIRPORTS Database; identifies the altitude of the airport above mean sea level.
EMC Environmental Modeling Center
Emission Factors The rates at which pollutants are emitted into the atmosphere per unit of consumption. Emission Factors are used to calculate the pollutant emissions from the various source categories in AEDT.
Emissions Report This report in AEDT gives the pollutant emissions and fuel consumption amounts for a user-selected Scenario, Case, and Job.
EPNL Effective Perceived Noise Level (multi-event) (noise metric)
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esri</td>
<td>Software development and services company providing GIS software and geodatabase management applications.</td>
</tr>
<tr>
<td>Event</td>
<td>A uniquely modeled operation or an individual flight</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration (U.S. DOT)</td>
</tr>
<tr>
<td>FAA-AEE</td>
<td>The Federal Aviation Administration Office of Environment and Energy</td>
</tr>
<tr>
<td>FAR</td>
<td>Federal Aviation Regulations</td>
</tr>
<tr>
<td>Fleet Mix Report</td>
<td>This report from AEDT shows a summary of operations, a detailed list of aircraft types, a comparison of aircraft types over different scenarios, and a runway count by scenario depending on the settings of the report.</td>
</tr>
<tr>
<td>Flight Path</td>
<td>The four-dimensional (length, width, altitude and time) description of an aircraft’s trajectory represented by a series of straight-line segments. The flight path could be seen as a combination of the Ground Track and the Flight Profile. The four flight path parameters include distance along a ground track, altitude, speed, and thrust per flight profile segment.</td>
</tr>
<tr>
<td>Flight Performance Report</td>
<td>This report in AEDT shows the flight information for a user-specified case. The Scenario, Case, and Job of interest must be defined by the user in order to generate this report.</td>
</tr>
<tr>
<td>Flight Profile</td>
<td>The two-dimensional (altitude and length) description of an aircraft’s trajectory represented by a series of straight-line segments.</td>
</tr>
<tr>
<td>Ft</td>
<td>Foot, feet</td>
</tr>
<tr>
<td>Geopotential height</td>
<td>Vertical coordinate referenced to Earth’s mean sea level. Geopotential height can be in reference to a certain pressure level, which would correspond to the geopotential height necessary to reach the given pressure.</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>Glide Slope</td>
<td>Parameter from the AIRPORTS Database; identifies the vertical guidance line used by aircraft for an approach to each unique runway end.</td>
</tr>
<tr>
<td>GRIB</td>
<td>Grid in Binary, which is a World Meteorological Organization standard file format.</td>
</tr>
<tr>
<td>GridFloat</td>
<td>Terrain file format</td>
</tr>
<tr>
<td>Ground Track</td>
<td>The two-dimensional (length and width) trace of the flight path on the horizontal plane. This represents the geographical ground location over which an aircraft flies.</td>
</tr>
<tr>
<td>GSFC</td>
<td>NASA Goddard Space Flight Center</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>h</td>
<td>Hours</td>
</tr>
<tr>
<td>H₂O</td>
<td>Water vapor</td>
</tr>
</tbody>
</table>
HAPs Hazardous Air Pollutants. Pollutants that are known or suspected to cause cancer or other serious health effects. The Environmental Protection Agency determines which chemicals are considered HAPs.

HC Hydrocarbon

IATA International Air Transport Association

ICAO International Civil Aviation Organization. The ICAO is a specialized agency of the United Nations that was created on December 7, 1944. It is the permanent international body that works to enhance global safety and security, minimize the environmental effect, increase efficiency, maintain continuity, and strengthen the laws within the international civil aviation community.

Impact Set Graph See “Impact Set Report.”

Impact Set Report AEDT allows the user to show noise results that compare two different annualizations in graphical (Impact Set Graph) or tabular (Impact Set Table) form.

Impact Set Table See “Impact Set Report.”

INM Integrated Noise Model

kg Kilograms

km Kilometers

kt Knots (international nautical miles per hour)

LAE Symbol for SEL – A-weighted sound exposure level (dB)

LAEQ Equivalent Sound Level for 24 Hours (noise metric)

LAEQD Equivalent Sound Level for a 15-Hour Day (noise metric)

LAEQN Equivalent Sound Level for a 9-Hour Night (noise metric)

LAMAX Maximum A-weighted Sound Level (noise metric)

lb Pounds force or weight

LCMAX Maximum C-weighted Sound Level (multi-event) (noise metric)

LEPN Symbol for EPNL – perceived sound exposure level (dB)

m Meters

mi U.S. statute miles

min Minutes

Mixing Height The height at the top layer of atmosphere where relatively vigorous mixing of pollutants and other gases will take place for the airport in a given month. The mixing height varies both diurnally and seasonally.

msi Microsoft Installer (standard windows installation format)

MSL Mean Sea Level
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NCAR</td>
<td>National Center for Atmospheric Research</td>
</tr>
<tr>
<td>NCAR</td>
<td>NCEP/NCAR Reanalysis Project weather files</td>
</tr>
<tr>
<td>NCDC</td>
<td>National Climatic Data Center</td>
</tr>
<tr>
<td>NCEP</td>
<td>National Centers for Environmental Prediction</td>
</tr>
<tr>
<td>NED</td>
<td>GridFloat format that covers both U.S. and International land areas (Terrain File Format).</td>
</tr>
<tr>
<td>NEF</td>
<td>Noise Exposure Forecast (noise metric)</td>
</tr>
<tr>
<td>NFDC FAA</td>
<td>National Flight Data Center (database)</td>
</tr>
<tr>
<td>NIRs</td>
<td>Noise Integrated Routing System</td>
</tr>
<tr>
<td>NMHC</td>
<td>Non-methane Hydro Carbon</td>
</tr>
<tr>
<td>nmi</td>
<td>International nautical mile (1852 meters)</td>
</tr>
<tr>
<td>NMPlot</td>
<td>Graphics application program that processes contours</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NO</td>
<td>Nitrogen oxides</td>
</tr>
<tr>
<td>NPD</td>
<td>Noise-power-distance</td>
</tr>
<tr>
<td>NWS</td>
<td>National Weather Service</td>
</tr>
<tr>
<td>Orthophoto</td>
<td>Aerial photograph geometrically corrected such that the scale is uniform.</td>
</tr>
<tr>
<td>OVF</td>
<td>Overflight operation</td>
</tr>
<tr>
<td>Pattern Altitude</td>
<td>Parameter from the AIRPORTS database, identifies height at which pilots are required to fly above ground level while around a particular airfield.</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer (based on Intel processor architecture)</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate matter</td>
</tr>
<tr>
<td>PMAD</td>
<td>Peak Month Average Day</td>
</tr>
<tr>
<td>PNLTm</td>
<td>Maximum Perceived Noise Level (multi-event) (noise metric)</td>
</tr>
<tr>
<td>Range Ring</td>
<td>Concentric circles around a point on a map</td>
</tr>
<tr>
<td>Receiver</td>
<td>A specified point in INM at which noise levels were computed. This term is being replaced by Receptor in the AEDT model.</td>
</tr>
<tr>
<td>Receptor</td>
<td>A specified point in space or on the ground at which modeled metrics are computed. Receptors can be setup in AEDT through the GUI or imported through the ASIF.</td>
</tr>
<tr>
<td>Receptor Set Report</td>
<td>This report in AEDT shows the details of a user-specified Receptor Set.</td>
</tr>
</tbody>
</table>
Relative Humidity Parameter from the AIRPORTS Database; identifies the mean amount of water vapor in the air as expressed in a ratio between the partial pressure of water vapor in the mixture to the saturated vapor pressure of water. This parameter is identified as an average monthly value for the month indicated in the MONTH field.

Rose Station Parameter from the AIRPORTS Database; identifies location of the wind rose, which is used to collect the airfield’s wind meteorological data.

RUC Rapid Update Cycle weather files

Runway Elevation Parameter from the AIRPORTS Database; identifies the elevation or altitude above mean sea level at each unique runway end.

Runway End Name Parameter from the AIRPORTS Database; identifies the two endpoints of each runway with names in order to clearly express their location.

Runway ID Parameter from the AIRPORTS Database; identifies each runway with a unique ID in order to clearly express its location and to avoid confusion among multiple runways.

Runway Latitude Parameter from the AIRPORTS Database; identifies the latitude of each unique runway end in order to clearly express the runway location.

Runway Longitude Parameter from the AIRPORTS Database; identifies the longitude of each unique runway end in order to clearly express the runway location.

Runway Length Parameter from the AIRPORTS Database; gives the distance between the two runway ends or length of a particular runway on the airfield.

Runway Width Parameter from the AIRPORTS Database; gives the shorter dimension or width of a particular runway on the airfield.

s Seconds

SAE Society of Automotive Engineers

Scenario A collection of one or more cases that must have common time durations and run/output properties. A scenario may contain multiple airports but each airport may only have a single layout assigned to it within a scenario.

Sea Level Pressure Parameter from the AIRPORTS Database; identifies the local station air pressure after it has been reduced to sea level assuming an isothermal layer at the station temperature. This parameter is an average monthly value for the month indicated in the MONTH field and is used in various weather calculations.

SEL A-weighted Sound Exposure Level (multi-event) (noise metric)

SOx Sulfur oxides

Station Pressure Parameter from the AIRPORTS Database; identifies the force exerted against a location at the airport by the column of air above it or air pressure. This parameter is an average monthly value for the month indicated in the MONTH field and is used in various weather calculations.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
<td>A collection of scenarios and supporting data. A study can contain multiple airports with multiple layouts at each airport.</td>
</tr>
<tr>
<td>Study Aircraft</td>
<td>The aircraft to which operations are assigned within a given scenario.</td>
</tr>
<tr>
<td>Study Boundary</td>
<td>Geospatial boundary around a modeling area. See section 7.1 for more information on how boundaries can be applied in AEDT 2a.</td>
</tr>
<tr>
<td>Study Input Report</td>
<td>This report in AEDT allows the user to view all of the Scenarios, Cases, and Airports in the study as well as the parameters of each of the study elements. This report can be found in the menu bar by selecting “View” and then “Study Input Report.”</td>
</tr>
<tr>
<td>Takeoff Displaced Threshold</td>
<td>Parameter from the AIRPORTS Database; identifies the area at the end of a runway that may be used for takeoff but never for landing in order to provide more clearance for departing aircraft. This area is typically located just beyond one of the runway ends.</td>
</tr>
<tr>
<td>TALA</td>
<td>Time Above an A-weighted Sound Level Threshold (noise metric)</td>
</tr>
<tr>
<td>TALC</td>
<td>Time Above a C-weighted Sound Level Threshold (noise metric)</td>
</tr>
<tr>
<td>TAPNL</td>
<td>Time Above a Perceived Noise Level Threshold (noise metric)</td>
</tr>
<tr>
<td>TAX</td>
<td>Taxi</td>
</tr>
<tr>
<td>Taxi In Time</td>
<td>Parameter from the AIRPORTS Database; identifies the magnitude of time that it takes for an aircraft to maneuver from the runway to the terminal after landing.</td>
</tr>
<tr>
<td>Taxi Out Time</td>
<td>Parameter from the AIRPORTS Database; identifies the magnitude of time that it takes for an aircraft to maneuver from the terminal to the runway just before takeoff.</td>
</tr>
<tr>
<td>Temperature</td>
<td>Parameter from the AIRPORTS Database; identifies the mean kinetic energy of the molecules or temperature at a site on the airport. This value is an average monthly value for the month indicated in the MONTH field.</td>
</tr>
<tr>
<td>Threshold Evaluation</td>
<td>Parameter from the AIRPORTS Database; identifies the feet above mean sea level or elevation above the displaced threshold of an aircraft at a particular point in time.</td>
</tr>
<tr>
<td>TGO</td>
<td>Touch-and-go operation</td>
</tr>
<tr>
<td>TOG</td>
<td>Total Organic Gases</td>
</tr>
<tr>
<td>UCAR</td>
<td>University Corporation for Atmospheric Research</td>
</tr>
<tr>
<td>U.S. DOT</td>
<td>United States Department of Transportation</td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time</td>
</tr>
<tr>
<td>UTM</td>
<td>Universal Transverse Mercator coordinate system</td>
</tr>
<tr>
<td>VNTSC</td>
<td>Volpe National Transportation Systems Center (U.S. DOT)</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile organic compound</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Weather Station ID</td>
<td>Parameter from the AIRPORTS Database; identifies the Identification Number/Name of the National Oceanic and Atmospheric Administration (NOAA) weather station closest to the airport.</td>
</tr>
<tr>
<td>WECPNL</td>
<td>Weighted Equivalent Continuous Perceived Noise Level (noise metric)</td>
</tr>
<tr>
<td>Wind Speed</td>
<td>Parameter from the AIRPORTS Database; identifies the measured movement of air or wind speed at a site on the airport. This value is an average monthly value for the month indicated in the MONTH field.</td>
</tr>
<tr>
<td>WMF</td>
<td>Windows Metafile (a graphics format)</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
</tbody>
</table>
Appendix B AEDT 2a System Structure

Figure B-1 AEDT 2a System Structure
Appendix C Menu Reference

File Menu

<table>
<thead>
<tr>
<th>File Menu Commands</th>
<th>Section Reference/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Study</td>
<td>Creating new studies through the GUI is not supported in AEDT 2a.</td>
</tr>
<tr>
<td>Open Study</td>
<td>Use this menu to save and close current study, then open another study. It opens the Load Study dialog box which allows the user to import a new study or open existing study. See section 3.3.</td>
</tr>
<tr>
<td>Save</td>
<td>Use this menu to commit any changes that have been made to the current study database.</td>
</tr>
<tr>
<td>Print</td>
<td>Not supported in AEDT 2a.</td>
</tr>
<tr>
<td>Print Preview</td>
<td>Not supported in AEDT 2a.</td>
</tr>
<tr>
<td>Import</td>
<td>Section 5.1.1</td>
</tr>
<tr>
<td>Export Aircraft</td>
<td>Section 6.5</td>
</tr>
<tr>
<td>Distributed Processing Setup</td>
<td>Section 2.2</td>
</tr>
<tr>
<td>Generate Administrative File</td>
<td>Section 5.8</td>
</tr>
<tr>
<td>Exit</td>
<td>Use this menu to save and close the current study, then quit AEDT.</td>
</tr>
</tbody>
</table>

Setup Menu

<table>
<thead>
<tr>
<th>Setup Menu Commands</th>
<th>Section Reference/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Setup</td>
<td>Section 4.6</td>
</tr>
<tr>
<td>Study Aircraft</td>
<td>Section 5.5.2</td>
</tr>
<tr>
<td>Receptors</td>
<td>Section 5.6.1</td>
</tr>
<tr>
<td>Receptor Sets</td>
<td>Section 5.6.2</td>
</tr>
<tr>
<td>Noise Metrics</td>
<td>Section 5.7</td>
</tr>
<tr>
<td>File Paths</td>
<td>Sections 5.1.4 and 5.1.5</td>
</tr>
</tbody>
</table>
View Menu

<table>
<thead>
<tr>
<th>View Menu Commands</th>
<th>Section Reference/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annualizations</td>
<td>Section 6.1</td>
</tr>
<tr>
<td>Tracks</td>
<td>Section 6.2</td>
</tr>
<tr>
<td>Study Boundary</td>
<td>Section 6.3</td>
</tr>
<tr>
<td>Study Input Report</td>
<td>Section 6.4.1</td>
</tr>
<tr>
<td>Fleet Mix Report</td>
<td>Section 6.4.2</td>
</tr>
<tr>
<td>Receptor Set Report</td>
<td>Section 6.4.3</td>
</tr>
<tr>
<td>Job Flight Performance</td>
<td>Section 6.5</td>
</tr>
<tr>
<td>Summary Report</td>
<td></td>
</tr>
<tr>
<td>AEDT Error Log</td>
<td>Section 6.6</td>
</tr>
</tbody>
</table>

Map Menu

<table>
<thead>
<tr>
<th>Map Menu Commands</th>
<th>Section Reference/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear Measurements</td>
<td>Section 4.4</td>
</tr>
<tr>
<td>Add External GIS Layer</td>
<td>Section 5.1.1</td>
</tr>
<tr>
<td>Draw GIS Object – Generate Region</td>
<td>Section 4.4</td>
</tr>
</tbody>
</table>

Run Menu

<table>
<thead>
<tr>
<th>Run Menu</th>
<th>Section Reference/Description</th>
</tr>
</thead>
</table>
Results Menu

<table>
<thead>
<tr>
<th>Results Menu Commands</th>
<th>Section Reference/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight Performance Information</td>
<td>Section 8.1</td>
</tr>
<tr>
<td>Noise Graph</td>
<td>Section 8.2</td>
</tr>
<tr>
<td>Change Analysis</td>
<td>Section 8.3</td>
</tr>
<tr>
<td>Contours</td>
<td>Section 8.4</td>
</tr>
<tr>
<td>Emissions Report</td>
<td>Section 8.5</td>
</tr>
<tr>
<td>Noise Report</td>
<td>Section 8.6</td>
</tr>
<tr>
<td>Clear Invalid Results</td>
<td>Section 8.7</td>
</tr>
</tbody>
</table>

Help Menu

<table>
<thead>
<tr>
<th>Help Menu Commands</th>
<th>Section Reference/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>Use this menu to open the AEDT User Guide.</td>
</tr>
<tr>
<td>About...</td>
<td>User this menu to open the About box which contains AEDT version information.</td>
</tr>
</tbody>
</table>
Appendix D SQL Server Configuration Settings

To confirm AEDT and Microsoft SQL Server configuration settings, the user must check the AEDT configuration file and the STUDY_ROOT database for matching SQL Server instance names. Instructions on how to confirm these settings for a basic SQL Server Express installation as described in Section 2.1.3.1 are provided below.

If running jobs with distributed processing, see Section 2.2 for instructions on how to identify appropriate SQL Server instance names.

To confirm that the appropriate SQL Server instance name is defined in the AEDT configuration file:

1. Identify the SQL Server instance name:
 - Windows XP
 a. Navigate to Start menu, Control Panel, System.
 b. The Systems Properties dialog box will open. Select the Computer Name tab (Figure D-1).
 c. The Full computer name consists of computer name and domain. The computer name without the Domain at the end is the desired SQL Server instance name (e.g. in Figure D-1 only COMPUTER NAME is needed, not .vntsce.x.local).
 - Windows 7
 a. Navigate to Start menu, Control Panel, System and Security, System (Figure D-2).
 b. The name in the Computer name field is the desired SQL Server instance name. Do not use the Full computer name.

![System Properties in Windows XP](image)

Figure D-1 System Properties in Windows XP
2. Open the configuration file C:\AEDT\FAA.AEE.AEDT.AEDTApp.exe.config. Confirm the SQL Server instance name in the highlighted locations in Figure D-3 matches the SQL Server instance name identified in previous step.
Appendix D SQL Server Configuration Settings

Aviation Environmental Design Tool
User Guide: 2a

Figure D-3 FAA.AEE.AEDT.AEDTApp.exe.config File—Database Locations

3. If the SQL Server instance name in the configuration file does not match the SQL Server instance name identified in Step 1, replace the SQL Server instance name in the configuration file with the correct SQL Server instance name.

The connection string is case sensitive; enter the SQL Server instance name in the same case as shown.

If the Load Study dialog box does not open upon startup of AEDT, the issue may be due to the incorrect value for the Data Source in the FAA.AEE.AEDT.AEDTApp.exe.config file. Sometimes “ServerName\MYSQLServer;” appears after “Data Source=” (e.g. “Data Source=localhost\MYSQLServer;”). The inclusion of \MYSQLServer in the SQL Server instance name can be invalid for some SQL connections and should be deleted. However, other SQL connections will accept the inclusion of \MYSQLServer.

To check the SQL Server instance name in the STUDY_ROOT database:
1. Close out of AEDT if it is open.
2. Open SQL Server Management Studio from the Start menu, All Programs, Microsoft SQL Server 2008 R2, SQL Server Management Studio.
3. In the Connect to Server dialog box, enter or select the appropriate SQL Server instance name then click the Connect button.
4. Open the database hierarchy in the Object Explorer.
5. Expand (double-click) the database named STUDY_ROOT and expand the folder named Tables.
6. Right-click on dbo.AVAILABLE_STUDIES and select Edit Top 200 Rows. See Figure D-4 below, for a sample screen shot of the STUDY_ROOT database.
7. In the table, look at the SQL Server instance name in the CONNECTION_STRING column and confirm that it matches the SQL Server instance name in the AEDT configuration file.
8. If the SQL Server instance name matches, no additional action is needed.

9. If the SQL Server instance name does not match:
 a. Open a *Query* window by clicking the *New Query* button and type or copy and paste the following SQL query:

   ```sql
   UPDATE [STUDY_ROOT].[dbo].[AVAILABLE_STUDIES]
   SET CONNECTION_STRING = replace(CONNECTION_STRING, 'localhost', @@SERVERNAME)
   GO
   ```

 b. Click the *Execute* button.

 c. The SQL query will update the column `CONNECTION_STRING` by searching for the value *localhost* in the column data and automatically set it to the correct SQL Server instance name. Likewise, any value entered where *localhost* is entered, will be searched for and replaced with the correct SQL Server instance name. Do not change "@@SERVERNAME" as it returns the name of the local server that is running SQL Server.
Appendix E Population Import Tool

The Population Import Tool (PIT) is a console application that allows the user to import population data into AEDT, based on geographic boundaries. The PIT imports population data and associated boundaries from census and county layer data files. Note that PIT only supports 2000 and 2010 census data.

⚠️ A study boundary must exist in order to import population data. For more information on study boundary see Section 6.3.

To download 2000 Census data:

1. Download county layer data files:
 a. Visit: http://www.census.gov/cgi-bin/geo/shapefiles2010/main
 b. Select Counties (and equivalent) for the layer type, and click submit.
 c. From the County and Equivalent (2000) drop-down menu, select All states in one national file. Click Download.
 d. Extract the zip file which contains the following county layer files. Move the files into the following directory, C:\AEDT\AEDT_Workspaces\PIT\CensusData\2000\CountiesLayer
 - TI_2010_us_county00.dbf
 - TI_2010_us_county00.prj
 - TI_2010_us_county00.shp
 - TI_2010_us_county00.shp.xml
 - TI_2010_us_county00.shx

2. Download census data files:
 a. Visit: http://www2.census.gov/census_2000/datasets/Summary_File_1
 b. Click on the U.S. State of interest.
 c. Click on the zip file for the U.S. State to download the census data (e.g. for Illinois, select ilgeo_uf1.zip).
 d. If the area of interest covers more than one State, download census data for all States of interest.
 e. Unzip the census data file(s) and move all files into the following directory, C:\AEDT\AEDT_Workspaces\PIT\CensusData\2000\SF1

To download 2010 Census data:

Unlike the 2000 census data, downloading 2010 census data takes longer because SF1 files cannot be downloaded individually. This results in slower downloads and unnecessary data.

1. Download county layer data files:
 a. Visit: http://www.census.gov/cgi-bin/geo/shapefiles2010/main
 b. Select Counties (and equivalent) for the layer type, and click submit.
 c. From the County and Equivalent (2010) drop-down menu, select All states in one national file. Click Download.
 d. Extract the zip file which contains the following county layer files. Move the files into the following directory, C:\AEDT\AEDT_Workspaces\PIT\CensusData\2010\CountiesLayer
 - TI_2010_us_county10.dbf
Aviation Environmental Design Tool
Appendix E Population Import Tool
User Guide: 2a

2. Download census data files:
 a. Visit: http://www2.census.gov/census_2010/04-Summary_File_1
 b. Click on the U.S. State of interest.
 c. Click on the zip file for the U.S. State to download the census data (e.g. for Illinois, select il2010.sf1.zip).
 d. If the area of interest covers more than one State, download census data for all States of interest.
 e. Unzip the census data file(s) and move all files into the following directory,
 C:\AEDT\AEDT_Workspaces\PIT\CensusData\2010\SF1
 f. [Optional] Delete all files except the geo files (e.g. ilgeo2010.sf1)

To import population data using the PIT:
1. From the Start menu type cmd in the Open field to open a command prompt window (or select Run in Windows XP).
2. Type in the following command to change the directory and press the enter key.
 cd C:\AEDT
3. Type in the following command:
 FAA.AEE.AEDT.GIS.PopulationImportTool [censusYear] [databaseName]
 Where:
 • [censusYear] is the year of the census data to import. Valid values are 2000 and 2010, do not enter the year in brackets.
 • [databaseName] is one of the Study names from the Load Study dialog of AEDT, do not enter the database name in brackets.
4. Press the enter key.
5. Figure E-1 displays the command prompt window when the processing has finished.

PIT will generate a warning message if census data files are missing for states that are within the study boundary.

700,000 points will take approximately up to an hour to process in the Population Import Tool.
6. Since census data does not contain elevation information, the elevation in the imported population receptor set must be updated:
 a. Open SQL Server Management Studio from the Start menu, All Programs, Microsoft SQL Server 2008 R2, SQL Server Management Studio.
 b. In the Connect to Server dialog box, enter or select the appropriate SQL Server instance name, then click the Connect button.
 c. Click on the New Query button.
 d. Copy or type the following code into the new query window:

   ```
   USE [databaseName]
   UPDATE dbo.[POPULATION]
   SET LOCATION = 'POINT(' +
   CAST(CAST((LOCATION).Long AS numeric(20,12))AS nvarchar(20))+'')+ ' +
   CAST(CAST((LOCATION).Lat AS numeric(20,12))AS nvarchar(20))+'')+ '+' +
   CAST (0 AS nvarchar(20))+'')' +
   WHERE LOCATION.Z IS NULL
   COMMIT
   ```

 e. Replace [databaseName] with the name of desired study in the first command (e.g., [STUDY_NIRS]).
 Update the elevation in the command, CAST (0 AS nvarchar(20))+'') by replacing the “0” with the primary airport elevation in feet – e.g. CAST (668 AS nvarchar(20))+'')
 f. Click the Execute button to run the query and update the population receptor elevation.
g. To save the script for future use, click the *Save* button, name and store in a desired location.

If the elevation is not updated after importing census data to create a population receptor set, the default elevation will be set to null and generate an error if an overflight scenario is run using the population receptor set.
Appendix F Terrain

This appendix provides instructions on the recommended way to obtain terrain data files from the U.S. Geological Survey (USGS) The National Map (TNM) Viewer.

To obtain GridFloat (NED) terrain data from the USGS TNM Viewer:
1. Go to http://viewer.nationalmap.govviewer
2. A map will load. Use the search function and/or the navigation tools to zoom into the area of interest.
3. The cursor position is displayed in lat/long in the bottom left corner of the map.
4. When the extent of the terrain that is desired is within view on the screen:
 a. Click on the Download Data arrow.
 b. Click on the Click here to download by current map extent link to download terrain data based on the current map extent.
5. The USGS Available Data for download dialog box will open.
 a. Check the Elevation box.
 b. Click the Next button.
6. The dialog box will update and provide options for elevation data.
 a. Check the *National Elevation Dataset (1/3 arc second) GridFloat* format.
 b. Click the *Next* button.

 It is recommended that 1/3 arc second data (nominally 30 meters) data is used.
 Alternatively the lower resolution 1 arc second data (nominally 90 meters) can be used.
 Avoid the 1/9 arc second NED data as coverage is not complete and such high resolution data could adversely affect processing times.
7. The Cart tab will appear on the right side of the webpage.
 a. Review the product in the cart and click the Checkout button.
 b. Enter an e-mail address and click the Place Order button.

8. The National Map Viewer will send an email with link(s) to download the ordered data. Click on the download link(s) and follow the prompts to complete the download.
Depending on the size of the data, more than one file may need to be downloaded.

9. Unzip the downloaded file(s) and store them in the location that will be specified in the AEDT terrain file path. See Section 5.1.4 on how to define terrain file path location in the AEDT GUI.
Appendix G Weather

This appendix provides:

- Overview of weather in AEDT 2a
- Instructions on how to download the supported types of high fidelity weather data files
- Instructions on how to pre-process weather data prior to using high fidelity weather in AEDT 2a

Overview of Weather in AEDT 2a

In AEDT 2a, weather data are applied to a study based on a hierarchy of data availability, as follows:

1. High fidelity weather data (user input), in the following order:
 a. RUC13
 b. RUC20
 c. GEOS
 d. NCAR
2. Average annual weather from the airport database.
3. International standard atmosphere (ISA) weather conditions are applied when weather data are not available.

AEDT 2a extracts atmospheric parameters (temperature, pressure, wind and relative humidity) for any given latitude, longitude, altitude, and time from a given meteorological dataset. The meteorological dataset can consist of airport data from the airport database (which can be overwritten) and/or user-provided GRIB (Grid in Binary, which is a World Meteorological Organization standard file format) files. The specific GRIB-formatted files can include Rapid Update Cycle (RUC) files, NCEP/NCAR Reanalysis Project (NCAR) ds090.0 files, or Geostationary Operational Environmental Satellite (GEOS) files. The user-provided GRIB files must be pre-processed as described below, before use. High fidelity weather utilizes user obtained data if present in the directories listed below. In the absence of user-obtained weather data in the specified directories, average annual weather from the airport database is utilized and adiabatic lapse rates are used to represent meteorological changes with altitude. In the event that there is no weather data in the airport database, international standard atmosphere (ISA) weather conditions are used.

In AEDT 2a, high fidelity weather is used in aircraft performance calculations. Since performance results are used in fuel burn, noise, and emissions calculations, high fidelity weather indirectly affects fuel burn, noise, and emissions results. Airport average annual weather is always directly used in acoustic propagation and adjustment calculations, regardless of high fidelity weather data availability.

High fidelity weather data are obtained in terms of pressure (milobar). AEDT 2a uses geopotential height associated with the obtained data in high fidelity weather processing; height in MSL is not used in calculations. This may result in an underprediction of height. Inaccuracies will increase with height. Maximum differences between height (in MSL) and geopotential height are as follows:

- 1000 feet (305 m) max difference ~ 1 m
- 10000 feet (3048 m) max difference ~ 10 m
- 20000 feet (6096 m) max difference ~ 20 m
Due to a non-linear relationship between pressure and geopotential height, inaccuracies of interpolated height will increase with height for a given slice of high fidelity weather data.

When high fidelity weather files are run as part of a study, data discrepancies may occur for some operations. When these errors occur, the affected operations are removed from analysis and written to the error log. See Section 6.6 to access the error log.

Downloading Weather Data

If weather data files are incomplete when downloaded, inaccuracies will persist when pre-processing the files. When a study is run with incomplete weather data, out of memory exceptions will occur. To ensure weather data files are complete, confirm that the file sizes are consistent between the downloaded files and the source.

All weather data must be downloaded with UTC time.

The weather data downloaded must be for the same dates as the air operations that are run or it will not be used. The weather is looked up based on the date of the air operation and the latitude/longitude. Dates are encoded in the name of the binary files. For example, the file _11192011-000__11192011-05959.RUC13.bin is for RUC13 data for the day 11/19/2011. If the file name is manually changed to _01012012-000__01012012-05959.RUC13.bin, the application would think it was RUC13 data for 01/01/2012. The file names can be edited to "trick" the application into using any data that you have available.

The following query can be run on the AIR_OPERATION table to see what dates exist in the data:

```sql
SELECT DISTINCT year([OPERATION_TIME]) as Year,
       month([OPERATION_TIME]) as Month,
       day([OPERATION_TIME]) as Day
FROM [AIR_OPERATION]
```
The following sections provide instructions on downloading weather data from RUC or NCAR data types as well as obtaining GEOS data. After downloading a file, add the data to the study by following the steps below:

1. Copy the weather file to the following directory, see Table G-1 for download URLs:
 a. Copy RUC files into C:\AEDT\AEDT_Workspaces\Sample_Wx_Data\RUC
 b. Copy NCAR files into C:\AEDT\AEDT_Workspaces\Sample_Wx_Data\NCAR
 c. Copy GEOS files into C:\AEDT\AEDT_Workspaces\Sample_Wx_Data\GEOS

Table G-1 Supported Weather Data File Types

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Download URL</th>
</tr>
</thead>
</table>
| Rapid Update Cycle (RUC20/RUC13) | RUC 20: http://nomads.ncdc.noaa.gov/data/ruc/
| NCEP/NCAR (NCAR) | NCAR data are not publically available, and may be retrieved only with permission from NASA. For more information, visit http://acdb-ext.gsfc.nasa.gov/Data_services/accounts/accounts.html |
| GEOS | GEOS-5 data are not publically available, and may be retrieved only with permission from NASA. See contact information in the GEOS section below. |

⚠️ Download URLs for weather data may change without notice.

Rapid Update Cycle (RUC)

The National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC) website hosts RUC data files. The RUC locations listed above as RUC13 and RUC20 are archived data for the different resolution types. The data to be used in AEDT must contain 24 hours of data for a particular day. For technical information, visit http://ruc.noaa.gov/.

In AEDT 2a, two RUC file data types are supported – RUC13 and RUC20 (signifying 13 kilometer and 20 kilometer resolution respectively).

RUC20 and RUC13 data cover the continental U.S. and parts of Mexico and Canada only as below and as shown in Figure G-1.

RUC 13 (13Km Grid)

- Grid: 451 (X) x 337 (Y) x 37(Z) = 5.6 million points (equidistance mb height data)
- Coords: Lambert-Conformal-Conic (touching at 25 degree N)
- Area covered: W -139.856122, E: -57.430877, N: 58.365355, S: 16.28100

RUC 20 (20Km Grid)

- Grid: 301 (X) x 225 (Y) x 37 (Z) (equidistance mb height data)
- Coords: Lambert-Conformal-Conic (touching at 25 degree N)
- Area covered: W -139.856122, E: -57.430877, N: 58.365355, S: 16.28100
When utilizing RUC weather data, jobs running with a total of more than 1500 operations may experience out of memory exceptions. Please review the AEDT error log for jobs of this magnitude.

Due to the large file size, downloading 24 hours of RUC data can take an extended amount of time to complete.

To download RUC weather files:
1. In a web browser, navigate to one of the download websites listed in Table G-1, above for RUC.
2. Find the year-month directory and then the year-month-day directory to proceed to the actual data files.
3. Select only the files that end in the .grb2 (RUC13) or .grb (RUC20) extension and that have the form as follows: \texttt{ruc2_??_yyyyymmdd_hh00_000} where:
 - ??? - represents RUC file data type, either 130 or 252.
 - yyyyymmdd - represents a 4-digit year, 2-digit month, and a 2-digit day.
 - hh00 - represents a 4-digit hour. The hours run between 0000 and 2300.
 - Only select files that contain the three zeroes, 000, at the end of the file name.
4. Each file contains 1 hour of data for the specified day. Download all 24 files for the date selected to obtain data for 24 hours of the day.
5. Place the RUC files into the following directory \texttt{C:AEDT\AEDT\Workspaces\Sample\Wx\Data\RUC}.

Each RUC file is between 20 MB and 30 MB in size. Therefore, 24 hours of RUC data total between 480 and 720 MB.

Running jobs with weather data may take a significant amount of time and the progress bar may disappear. To verify that AEDT is running, open the Windows Task Manager by holding Ctrl + Alt and pressing the Delete key, then select the Start Task Manager.
process named FAA.AEE.AEDT.AEDTApp.exe should appear in the Processes tab, shown in Figure G-2 below.

![Figure G-2 Windows Task Manager](image)

GEOS 5.2 Dataset (Goddard Earth Observing System Data Assimilation System Gridded Output)

The NASA Goddard Global Modeling and Assimilation Office (GMAO) produces GEOS-5 data four times per day, approximately 12 hours behind real-time.

GEOS data cover the entire earth in a latitude-longitude grid as below:

- Grid: 540 (X) x 361 (Y) x 36 (Z) (non-equidistance mb height data)
- Coords: Lat Lon (delta Lon = 0.66... degrees, delta Lat = 0.5 degrees)
- Area Covered: Lat (-90 degrees to 90 degrees), Lon (-180 degrees to 179.33... degrees)

At lower altitudes, GEOS data coverage has many gaps and uses the value 10.E+15 where data is missing. Unrealistic results may appear in AEDT 2a weather processing. It is recommended to only use GEOS data where it has full coverage in AEDT 2a.

The GEOS-5 data are not publically available, and may be retrieved only with permission from NASA. To obtain the current GEOS-5 dataset:

1. Contact either of the following NASA staff via email:
 a. Data M. Ostrenga (data.m.ostrenga@nasa.gov)
 b. Gi-Kong Kim (gi-kong.kim-1@nasa.gov)
2. In the email, provide the following information:
a. State that the data will be used as inputs to the Aviation Environmental Design Tool.
b. Request the GEOS-5 variables that are listed below. They are provided in the following format, Variable Name—Description (Unit):
 • H—Geopotential height (m)
 • RH—Relative Humidity (percent)
 • T—Air Temperature (K)
 • U—Eastward Wind Component (m s\(^{-1}\))
 • V—Northward Wind Component (m s\(^{-1}\))

Data use permission will be granted subject to the following conditions:
1. The GEOS-5 data may not be distributed outside of the AEDT project team.
2. User(s) will provide GMAO feedback on the GEOS-5 data.
3. Use of GEOS-5 data will be acknowledged in any resulting publications.

Once permission is granted, downloading instructions will be provided.
1. File format specification for GEOS-5 data is described in the following pdf file:
2. Each file contains data for a 6-hour period of the specified day. Download all 4 files for the date selected to obtain data for full 24 hours of the day.
3. Place the GEOS files into the following directory
 `C:\AEDT\AEDT_Workspaces\Sample_Wx_Data\GEOS`.

 Each GEOS file is approximately 80 MB in size. Therefore, 24 hours of GEOS data total approximately 320 MB.

NCEP/NCAR Reanalysis Project Dataset 090.0 (ds090.0): referred here as “NCAR”

The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) website hosts data from September 2003 onward. The full NCAR ds090.0 contains data from the calendar year 1948 onward and can be downloaded for free after completing registration on the home page.

The University Corporation for Atmospheric Research's (UCAR) National Center for Atmospheric Research's (NCAR) and the National Weather Service's (NWS) National Centers for Environmental Prediction (NCEP) provide the data. For technical information, visit http://dss.ucar.edu/datasets/ds090.0/.

NCAR data cover the entire Earth as below:

Grid: 144 (X) x 73 (Y) x 17 (Z)
Coords: Lat Lon (delta lat = delta lon = 2.5 degrees)
Area Covered: Lat (90 degrees to -90 degrees), Lon (0 degrees to 360 degrees)

The NCAR data are not publically available, and may be retrieved only with permission from NASA. To obtain the NCAR dataset, visit http://acdb-ext.gsfc.nasa.gov/Data_services/accounts/accounts.html.

1. NCAR file names are formatted as *pgb.f00yymmddhh* where:
Appendix G Weather

Aviation Environmental Design Tool
User Guide: 2a

- **00yymmdd** - represents a 2-digit year, 2-digit month, and a 2-digit day.
- **hh** - represents the UTC hour of the day.

For example, file *pgb.f0005092818* contains data for September 28, 2005 18:00 UTC.

2. Each file contains data for a 6-hour period of the specified day. Download all four files for the date selected to obtain data for full 24 hours of the day.

3. Place the NCAR files into the following directory

 C:\AEDT\AEDT_Workspaces\Sample_Wx_Data\NCAR.

Each NCAR file is approximately 3 MB in size. Therefore, 24 hours of NCAR data total approximately 12 MB.

Pre-Processing Weather Data

Once downloaded, all weather data files must be pre-processed into a binary format before they can be used in AEDT. The Weather Data Loader is a command-line tool that can be used to pre-process the weather data. It is provided with the installation of AEDT and is located in the following directory

C:\AEDT\FAA.AEE.AEDT.WeatherDataLoader.exe.

The weather data files must contain 24 hours of data for the specified day. The Weather Data Loader will generate an error message "could not download weather data file" if the data are not complete for full 24 hours of the day.

To run the Weather Data Loader:

1. From the Start menu type **cmd** in the Open field to open a command prompt window (or select **Run** in Windows XP).

2. Type in the following command to change the directory and press the enter key.

   ```
   cd C:\AEDT
   ```

3. Type in the following command, omitting the brackets as shown in Figure G-3:

   ```
   FAA.AEE.AEDT.WeatherDataLoader [Date of Data to be Processed] [Weather Data Type] ["Directory of Data"]
   ```

 Where:
 - **Date of Data to be Processed**: Enter the date in mm/dd/yyyy format.
 - **Weather Data Type**: Enter the weather data type: RUC13, RUC20, or NCAR.
 - **Directory of Data**: Enter a path to the directory where the weather data are stored in quotes, “C:\AEDT\AEDT_Workspaces\Sample_Wx_Data\NCAR”.
4. Press the enter key.
5. After the weather data have been pre-processed, see Section 5.1.5 for instructions on importing weather data by specifying the weather file path locations.
Appendix H Reports

This appendix provides snapshots of sample report output files.

Figure H-1 Sample Study Input Report
Figure H-2 Sample Fleet Mix Report

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Fleet Mix Report: Types>Summary>Operations</td>
<td>Level>Case</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative_2005</td>
<td>Plan0_c1a100bf2.mdw.arr_STD</td>
<td>13</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alternative_2005</td>
<td>Plan0_c1a100bf2.mdw.dep_STD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Alternative_2005</td>
<td>Plan0_c1a100bf2.mike.arr_STD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alternative_2005</td>
<td>Plan0_c1a100bf2.mike.dep_STD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alternative_2005</td>
<td>Plan0_c1a100bf2.ord.day.arr_STD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alternative_2005</td>
<td>Plan0_c1a100bf2.ord.day.dep_STD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alternative_2005</td>
<td>Plan0_c1a100bf2.ord.night.arr_STD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alternative_2005</td>
<td>Plan0_c1a100bf2.ord.night.dep_STD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alternative_2005</td>
<td>Plan1_alaexf2.mdw.arr_STD</td>
<td>22</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alternative_2005</td>
<td>Plan1_alaexf2.mike.arr_STD</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>Alternative_2005</td>
<td>Plan1_alaexf2.mike.dep_STD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alternative_2005</td>
<td>Plan1_alaexf2.ord.day.arr_STD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alternative_2005</td>
<td>Plan1_alaexf2.ord.day.dep_STD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alternative_2005</td>
<td>Plan1_alaexf2.ord.night.arr_STD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alternative_2005</td>
<td>Plan1_alaexf2.ord.night.dep_STD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Baseline_1990</td>
<td>Plan0_exxxa2.mdw.arr_STD</td>
<td>13</td>
<td>0</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Baseline_1990</td>
<td>Plan0_exxxa2.mdw.dep_STD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Baseline_1990</td>
<td>Plan0_exxxa2.mike.arr_STD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Baseline_1990</td>
<td>Plan0_exxxa2.mike.dep_STD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure H-3 Sample Receptor Set Report

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Receptor Set Report</td>
<td>Name : pop5068.txt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Description : NIRS Population File</td>
<td></td>
</tr>
<tr>
<td>% Type : Population</td>
<td></td>
</tr>
<tr>
<td>% Num Records: 100</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Altitude</td>
<td>StateFIPS</td>
<td>CountyFIPS</td>
<td>BlockID</td>
<td>BNA_ID</td>
<td>Households</td>
<td>PopCount</td>
<td>LandUse</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td>------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>7</td>
<td>40.685787</td>
<td>-87.20132</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>41.07824</td>
<td>-87.14675</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>41.61395</td>
<td>-87.48807</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>41.577747</td>
<td>-87.30478</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>41.6111</td>
<td>-87.51186</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>41.542095</td>
<td>-87.444625</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>41.20334</td>
<td>-87.43562</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>41.591473</td>
<td>-86.65802</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>41.36925</td>
<td>-86.80571</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>41.480103</td>
<td>-87.65499</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>62</td>
<td></td>
</tr>
</tbody>
</table>
Figure H-4 Sample Job Flight Performance Summary Report
Figure H-5 Sample Job Flight Performance Summary Report – Detailed Error Reporting

Figure H-6 Sample Flight Performance Report
Appendix H Reports

Aviation Environmental Design Tool

User Guide: 2a

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Job:</td>
<td>Job 1 Alternative 2005: My DNL Noise Run Options</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Case:</td>
<td>Annualized Results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Type:</td>
<td>Points</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Metric:</td>
<td>DNL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Annualization:</td>
<td>Alternative.config</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Acoustic Event Index</td>
<td>Noise Result Index</td>
<td>Latitude</td>
<td>Longitude</td>
<td>DNL Noise Level (dB)</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>40.658578</td>
<td>-87.20132</td>
<td>36.901458</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>41.07824</td>
<td>-87.14667</td>
<td>26.730962</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>41.613945</td>
<td>-87.48807</td>
<td>40.18354</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>41.577747</td>
<td>-87.30478</td>
<td>39.317518</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>41.611</td>
<td>-87.51166</td>
<td>43.302575</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>41.542035</td>
<td>-87.44462</td>
<td>41.071275</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>41.20534</td>
<td>-87.45562</td>
<td>40.381328</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>41.591473</td>
<td>-86.68502</td>
<td>27.377506</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>41.36825</td>
<td>-86.30671</td>
<td>38.577228</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>41.480103</td>
<td>-87.06449</td>
<td>37.80951</td>
</tr>
</tbody>
</table>

Figure H-7 Sample Noise Exposure Report

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>2. A Cost</td>
<td>Mode</td>
<td>Part(kg)</td>
<td>Distance(km)</td>
<td>Duration</td>
<td>CO(kg)</td>
<td>HC(kg)</td>
<td>NO(kg)</td>
<td>NOX(kg)</td>
<td>PM10(kg)</td>
<td>PM2.5(kg)</td>
<td>CO2(kg)</td>
<td>H2S(kg)</td>
<td>SO2(kg)</td>
<td>PM2.5(kg)</td>
<td>PM10(kg)</td>
<td>PM2.5(kg)</td>
<td>PM10(kg)</td>
</tr>
<tr>
<td>3. B 0</td>
<td>0</td>
</tr>
<tr>
<td>4. C 1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
</tr>
</tbody>
</table>

Figure H-8 Sample Emissions Report

Page 162
This appendix describes how average annual day (AAD) and peak month average day (PMAD) can be calculated from an annual schedule.

For certain analyses, operations must be entered in the ASIF based on an average annual day (AAD). To determine the AAD from an annual schedule:
1. Add the number of operations for the like entries in the annual schedule. Like entries are determined by type of aircraft, operation type, track, and time of day (daytime 0700-2200 hours local and nighttime 2200-0700 hours local).
2. After like entries are added, the total must be divided by 365 for each remaining entry to represent an average day of operations in the year.

A Design Day Ratio (also known as PMAD scaling factor) is needed to create an aircraft emissions inventory. To identify the Design Day Ratio:
1. Determine the month with the most operations (i.e. peak flights) for the year.
2. Compute the average daily operations for that month (i.e., the PMAD operations):
 \[\text{PMAD} = \frac{\text{# Operations in the month with the Most Operations}}{\text{# Days in that Month}} \]
3. Compute the AAD number of operations for the year:
 \[\text{AAD} = \frac{\text{Total # Operations in the Year}}{\text{# Days in that Year}} \]
4. Compute the Design Day Ratio:
 \[\text{Design Day Ratio} = \frac{\text{PMAD}}{\text{AAD}} \]
Appendix J Advanced User Tools

This appendix describes external command-line tools that the advanced user may find useful. All tools described in this section are optional and are included with the AEDT installation package. The tools in this appendix include:

- Remove Results Tool: Remove invalid results from the study database
- Deserialize Emissions Tool: Deserialize emissions results into the relational form

Remove Results Tool

Remove Results is a command-line tool that allows a user to remove invalid results from the study database as an alternative to clearing the results in the AEDT 2a GUI. See Section 7.3 for instructions on marking results as invalid. See Section 8.7 for instructions on clearing invalid results in the AEDT 2a GUI.

The Remove Results tool can be used to remove unused events in the relational form, and to remove all of the results from the study if desired. The Remove Results tool is provided with the installation of AEDT and is located in the following directory: C:\AEDT\FAA.AEE.AEDT.RemoveResults.

Removing invalid results using the Remove Results tool can be done any time, even while working in the AEDT 2a application. The Remove Results tool process can be aborted at any time without affecting the integrity of the database.

The AEDT 2a application must be closed when removing unused events or removing all results.

To remove results marked as invalid:
1. From the Start menu type cmd in the Open field to open a command prompt window (or select Run in Windows XP).
2. Type in the following command to change the directory and press the enter key.

 cd C:\AEDT

3. Type in the command:

 FAA.AEE.AEDT.RemoveResults name [StudyName]

 where [StudyName] represents the study name of interest, for example STUDY_NIRS.

4. Press the enter key.
5. The Remove Results tool will run and report the percentage complete, the total number of results removed and the time that it took to remove the results.

![Remove Results Command Prompt](image1)

Figure J-1 Remove Results Command Prompt

For a complete description of the Remove Results tool functionalities, type in the following command at the command prompt and press the enter key.

```
FAA.AEE.AEDT.RemoveResults help
```

The full functionalities will appear as below.

![Remove Results Help](image2)

Figure J-2 Remove Results Help
When results marked as invalid are removed, the respective events stored in the relational form will be removed as well. However, events that do not have the associated results due to modeling failures will stay in the database.

To remove unused events in the relational form:
1. Close AEDT if the application is open.
2. From the Start menu, type cmd in the Open field to open a command prompt window (or select Run in Windows XP).
3. Type in the following command to change the directory and press the enter key.

 cd C:\AEDT

4. Type in the command:

 FAA.AEE.AEDT.RemoveResults name [StudyName] EVENTS

 where [StudyName] represents the study name of interest, for example STUDY_NIRS.

5. Press the enter key.
6. The Remove Results tool will run and report the percentage complete, the total number of results removed and the time that it took to remove the results.

 ![Remove Results Command Prompt](image)

To count the number of unused events before removing, follow the instructions below:

1. Open SQL Server Management Studio.
2. Create the query as below to count the records in the RSLT_EVENTS table. The RSLT_EVENTS table contains the unused events in the relational form that remain in the database.

   ```sql
   SELECT COUNT(*) FROM [STUDY_NIRS].[dbo].[RSLT_EVENTS]
   ```

3. Click the Execute button.
4. The query results will appear in the Results window as shown below.

![Figure J-4 Query Results](image)

To remove all results:
1. Close AEDT if the application is open.
2. From the Start menu type `cmd` in the *Open* field to open a command prompt window (or select *Run* in Windows XP).
3. Type in the following command to change the directory and press the enter key.

   ```
   cd C:\AEDT
   ```

4. Type in the command:

   ```
   FAA.AEE.AEDT.RemoveResults name [StudyName] ALL
   ```

 where `[StudyName]` represents the study name of interest, for example `STUDY_NIRS`.

5. Press the enter key.
6. The Remove Results tool will run and report the percentage complete, the total number of results removed and the time that it took to remove the results.

![Figure J-5 Remove Results Command Prompt](image)

Deserialize Emissions Tool

The Deserializer Emissions Tool is a command-line application which allows a user to view serialized results of the following types of emissions results into the relational form: `IAccumulatedMetricsEmissionsTotals`, `IEmissionsModalResultCollection`, and `IEmissionsModalResultAccumulated`, result types 51, 53, and 54 respectively. The deserialized results
Appendix J Advanced User Tools

Aviation Environmental Design Tool

User Guide: 2a

are stored in the RSLT_EMISSIONS table in the Study database. Users can then query the RSLT_EMISSIONS table for detailed data mining.

Command Line Options

FAA.AEE.AEDT.DeserializeEmissions.exe <STUDY_NAME> [JOB_ID] [SCENARIO_ID] [CASE_ID]

Where

• <STUDY_NAME> is the study name of interest.
• [JOB_ID] – Look up the Job ID in the [JOBS] table.

The Deserialize Emissions Tool may hang if the user submits a request for a whole job for a large study (e.g., FAA.AEE.AEDT.DeserializeEmissions.exe LARGE_STUDY 1). When using with a large study, it is suggested to submit deserialization request on a per case bases using the optional [SCENARIO_ID] and [CASE_ID] arguments. For example, in the following command, the first parameter is the study database name, the second parameter is the job ID, the third parameter is the scenario ID, and the last parameter is the case ID.

FAA.AEE.AEDT.DeserializeEmissions.exe LARGE_STUDY 1 1 4

To deserialize emissions results:

1. [Optional] In AEDT, reset all the jobs and clear the invalid results. This step ensures that the RSLT_EMISSIONS table is empty.
2. In AEDT, run desired jobs in Jobs dialog box.

It is recommended to set the persistence detail of Emissions Results to Event. When set to Event, then the Deserialize Emissions tool can deserialize all types of the emissions results it is designed for. If the persistence is set to Segment, it will deserialize only up to the Event Modal results. If the persistence is set to the Case, then it will deserialize everything, but less compared to the Event persistence setting.

3. In AEDT, run desired jobs in the Jobs dialog box.
4. From the Start menu type cmd in the Open field to open a command prompt window (or select Run in Windows XP).
5. Type in the following command to change the directory and press the enter key.

 cd C:\AEDT

6. Type in the command:

 FAA.AEE.AEDT.DeserializeEmissions.exe <STUDY_NAME> [JOB_ID]

Where
• `<STUDY_NAME>` is the study name of interest.

1. Press the enter key.
2. The tool will run and report the number of records that are deserialized by emissions type.
3. Figure J-6 displays the command prompt window when the processing has finished.

Sample Usage of Deserialize Emissions Tool
The following instructions uses default jobs #2 and job#9 in STUDY_NIRS as an example. A sample SQL query is provided for the user to start data mining.

1. Open STUDY_NIRS in AEDT. In the Jobs dialog box, reset all the jobs and clear the invalid results. This step ensures that the RSLT_EMISSIONS table is empty.
2. In the Jobs dialog box, change the Emissions Result Detail to Event for default jobs #2 and #9.
3. Run jobs #2 and #9.
4. From the Start menu type `cmd` in the Open field to open a command prompt window (or select Run in Windows XP).
5. Type in the following command to change the directory and press the enter key.

   ```
   cd C:\AEDT
   ```

6. Type in the following command, and press the enter key. This will deserialize emissions results for the job ID 2 in STUDY NIRS. The tool will run and report the number of records that are deserialized by emission type.

   ```
   FAA.AEE.AEDT.DeserializeEmissions.exe STUDY_NIRS 2
   ```

7. Type in the following command, and press the enter key. This will deserialize emissions results for the job ID 9 in STUDY NIRS. The tool will run and report the number of records that are deserialized by emission type.

   ```
   FAA.AEE.AEDT.DeserializeEmissions.exe STUDY_NIRS 9
   ```
8. The following SQL query will return the emissions results for Cessna 441 Conquest II aircraft (CNA441) in job ID 2. The WHERE clause “WHERE s.JOB_ID =” can be changed to return results for job ID 9. For each job, the query should return 264 records. If the user resets one of the jobs, then the query will return no records.

```
SELECT e.[RSLT_EMISSION_ID] 
, e.[EVENT_RESULTS_SOURCE_ID] 
, e.[ANNUALIZATION_ID] 
, e.[EMISSIONS_TYPE] 
, e.[MODE] 
, e.[CO2] 
, e.[CO] 
, e.[THC] 
, e.[NMHC] 
, e.[VOC] 
, e.[TOG] 
, e.[NOX] 
, e.[SOX] 
, e.[PM] 
, e.[PMNV] 
, e.[PMSO] 
, e.[PMFO] 
, e.[PMLO] 
, e.[H2O] 
, e.[FUEL_BURN] 
FROM [STUDY_NIRS].[dbo].[RSLT_EMISSIONS] e 
JOIN [STUDY_NIRS].[dbo].[EVENT_RESULTS_SOURCE] s 
ON e.EVENT_RESULTS_SOURCE_ID = s.EVENT_RESULTS_SOURCE_ID 
JOIN [STUDY_NIRS].[dbo].[AIR_OPERATION] o 
ON s.AIR_OP_ID = o.AIR_OP_ID 
JOIN [STUDY_NIRS].[dbo].[AIR_OPERATION_AIRCRAFT] a 
ON o.AIRCRAFT_ID = a.AIRCRAFT_ID 
JOIN [STUDY_NIRS].[dbo].[FLT_EQUIPMENT] f 
ON a.EQUIPMENT_ID = f.EQUIP_ID 
WHERE sJOB_ID = 2 
AND e.EMISSIONS_TYPE = 53 
AND f.ANP_AIRPLANE_ID = 'CNA441'
```
Appendix K AEDT-NIRS Guidance

Introduction
The Federal Aviation Administration’s (FAA) Aviation Environmental Design Tool Version 2a Service Pack 2 (AEDT 2a SP2) is primarily intended to replace the FAA’s Noise Integrated Routing System (NIRS) for use in environmental analyses for air traffic airspace and procedure actions under the National Environmental Policy Act (NEPA). AEDT 2a SP2 includes numerous enhancements and changes relative to NIRS, so while the overall capabilities are matched, the exact usage and output are not. The purpose of this appendix is to help users already familiar with the NIRS legacy tool understand what to expect and how to adapt to using AEDT 2a SP2 in its place.

Detailed AEDT vs. NIRS Comparisons
The AEDT 2a Uncertainty Quantification (UQ) Report and supplemental report describing AEDT 2a SP2 (available on the AEDT Support website) cover details on the methods and algorithms that the model is based on including information on Verification and Validation (V&V) analyses and comparisons between AEDT 2a and NIRS. These comparisons include discussions on the primary differences between the two tools in terms of modeling methods and assumptions as well as detailed output comparisons and descriptions of differences in results between the two models. The comparison content speaks directly to the goal of this Appendix in informing users about underlying differences between AEDT 2a and NIRS and the impacts of those differences on results. This content is extensive and is therefore not duplicated here.

It is highly recommended that users review the AEDT 2a UQ Report and SP2 supplemental report with particular focus on Section 3.4 Comparison to Legacy Tools. Section 3.8 Flight Performance Methodology Altitude Transition is also recommended as it provides details about a significant modeling difference between AEDT 2a SP2 and NIRS that may affect results from air traffic airspace and procedure NEPA studies. Section 4.2 AEDT 2a-NIRS Compatibility Demonstration contains a broader, higher level comparison between the two tools using a large sample study to build upon the more detailed comparisons of the earlier sections, and is therefore also very important in the context of this Appendix.

Flight Performance Errors from AEDT 2a SP2
The modeling differences between AEDT 2a and NIRS described in the AEDT 2a UQ Report not only create differences in the output from the two models, but also affect how the models react to the data that are provided to them as input. The predominant method for defining flight operations for air traffic airspace and procedure NEPA studies is via the use of altitude controls. Defining flight operations via altitude controls has always been an iterative process even in the legacy NIRS tool. Initial attempts at modeling baseline or future airspace procedures can sometimes fail due to issues with the available input data and the degree to which that data meets the constraints of the aircraft flight performance models used within the tools. AEDT 2a SP2 users should be prepared for the tool to reject certain sets of altitude controls, at which point those controls would need to be modified or deleted, as was the case with NIRS. The modeling differences between the two tools are discussed in detail in the AEDT 2a Uncertainty Quantification (UQ) report. Due to these differences, AEDT 2a SP2 users should be prepared for some flight operations defined via altitude controls that were accepted by NIRS to be rejected by AEDT 2a SP2. This section describes some techniques for revising those flight operations so that they are accepted by AEDT 2a SP2.
The error messages related to aircraft flight performance issues, such as those stemming from exceptions encountered trying to follow a given set of input altitude controls, have changed between NIRS and AEDT 2a SP2. The error message changes were made in an attempt to provide more information about the specific cause of a given flight performance failure in order to make it easier for users to resolve those problems. Below is a list of the error messages that may be encountered due to flight performance exceptions during a typical regional or airspace NEPA study along with possible solutions. This list is meant to be a reference for AEDT 2a SP2 users attempting to resolve flight performance errors whether they stem from exceptions unique to AEDT 2a SP2 that were not encountered in NIRS or any other issues in general. They are listed in alphabetical order based on the text of the error message.

The AEDT Flight Path Processing Module (FPPM) calculates trajectories to match altitude control definitions across all relevant phases of flight for civilian jet, turboprop, and piston propeller driven airplanes. Trajectories are calculated to match the input altitude control values and codes as closely as possible within the limits of a given aircraft’s performance characteristics using the defined atmospheric conditions. When those limits are exceeded AEDT issues error messages requiring the user to modify the input altitude controls as necessary to allow the altitude control constraints to be met. En-route (BADA) and Terminal Area (ANP) procedural profile data must be available for the modeled aircraft type for AEDT to perform its calculations. Aircraft types with missing procedural information, including those with fixed-point type STANDARD ANP flight profiles, cannot be used in conjunction with altitude controls.

1. **Acceleration too low for accelerate-percent procedure step; cannot simultaneously achieve minimum longitudinal acceleration of XX g and minimum climb angle of XX deg**

 This exception occurs when an airplane does not have enough power to simultaneously achieve the minimum longitudinal acceleration of 0.02 g and the minimum climb angle of 0.5 degrees and is required to accelerate by its ANP profile. Note that although there are ways to force these flights to process, this message generally indicates that the desired flight is genuinely beyond the capabilities of the aircraft. This trigger is similar to that for failure message #15, except that in this case the inadequate performance characteristics are first detected through a low climb angle value. This failure only occurs when using user-defined departure profiles that include accelerate-percent procedure steps.

2. **APM generated a performance event result with over 15000 trajectory segments**

 This exception is triggered when sensor paths, tracks, or fixed-point profiles with extremely large numbers of points, and/or the sub-segmentation associated with wide ranges of altitude and speed, result in a calculated aircraft trajectory with over 15,000 segments. Large numbers of segments can lead to large calculation times for noise. This check is in place to protect the user from long runtimes since the expected number of segments for any AEDT operation is well below 15,000.

3. **Calculated engine-out thrust XX lbf less than minimum acceptable level of thrust XX lbf**
This exception is triggered if the calculated engine-out thrust is less than the minimal acceptable level of thrust (1.0 lbf). Engine-out thrust is rarely calculated, and only when specified in user-defined departure procedures.

4. **Climb angle for cruise-climb step must be greater than XX deg**

This exception is triggered when the calculated climb angle for a climb step is less than the AEDT minimum climb angle (0.5 deg). It occurs due to extremely shallow climbs that can only arise when specified by a user-defined procedure.

5. **Climb angle XX deg greater than maximum allowed climb angle XX deg for accelerate-percent step**

This exception is triggered when the climb angle for an accelerate-percent procedure step is greater than the AEDT maximum climb angle of 45 degrees. It occurs due to extremely steep climbs that can only arise from high climb rates (compared to airspeed) specified for an accelerate step in a user-defined procedure in the form of a low acceleration energy share percentage.

6. **Climb angle XX deg greater than maximum allowed climb angle XX deg for acceleration step**

This exception is triggered when the climb angle for an accelerate procedure step is greater than the AEDT maximum climb angle of 45 degrees. It occurs due to extremely steep climbs that can only arise from high climb rates (compared to airspeed) specified for an accelerate step in a user-defined.

7. **Could not generate FPPM profile from APM: XX (message)**

This exception is triggered by a failure in pre-processing by the APM before the FPPM runs. The associated APM exception message is included. It can be triggered by any of the conditions listed in the present document, with the error message contained within the full message indicating the proper entry to consult.

8. **Could not replace missing NPD data for ConstantVelocityApproach for helicopter id: XX.**

The affected helicopter does not have sufficient NPD data to process noise for the given metric.

Possible solutions:
- Create user-defined NPD data for the desired noise metric; or
- Change the study settings so that noise calculations are not run for this metric and helicopter type.

9. **Descend step has final altitude XX ft that is higher than initial altitude XX ft.**

This mode of failure is triggered when a descent step in an approach operation has a final altitude that is higher than its initial altitude. This failure can only arise for deceleration-adjusted descent steps, under extreme weather conditions, where the adjustment of altitude for deceleration exceeds the entire vertical extent of the adjacent descent step.
Possible solutions:
- Replace the procedure with a custom procedure with either consolidated descent steps, or larger altitude spacing between consecutive descent steps; or
- Calculate the flight using atmospheric conditions closer to the international standard atmosphere.

10. **Final altitude cannot be lower than initial altitude for cruise climb step**

This exception is triggered if the final altitude is lower than the initial altitude in a climb step, which is not allowed.

11. **Final altitude for climb-rate acceleration failed to converge after 5000 ft of brute force iteration**

This exception can be triggered if an accelerating climb procedure step calculation fails to converge to a final altitude. Users could trigger this by activating the use of high-fidelity weather and supplying weather data with strong gradients in the pressure, density, or temperature fields.

12. **For overflights, there must be a minimum of two altitude control nodes above 500 ft (AFE) for XX (operation type).**

This type of failure is triggered by over-flight operations that have altitude controls (thereby requiring a custom profile), but do not have at least two altitude controls above 500 ft AFE (the minimum number of altitude controls for custom profiles).

Possible solution:
- Add altitude controls until a minimum of two controls exist within the 500 ft to study cutoff altitude range.

13. **FPPM requires a procedural profile, not a fixed point profile.**

This error can occur in two situations:
- When using altitude controls for an aircraft with fixed point profiles.
- When using sensor path for an aircraft with fixed point profiles.

Possible solutions:
- Disable all altitude controls for the affected track;
- Re-assign the affected operations to a different track which does not include altitude controls; or
- Substitute an aircraft that contains procedural profiles.

14. **Next altitude XX ft must equal level start altitude XX ft for level step**

This exception is triggered by unequal starting and ending altitudes for level steps.

15. **Not enough thrust to accelerate & climb for accelerate-percent step; cannot simultaneously achieve minimum longitudinal acceleration of XX g and minimum climb angle of XX deg**
This exception occurs when an airplane does not have enough power to simultaneously achieve the minimum longitudinal acceleration of 0.02 g and the minimum climb angle of 0.5 degrees and is required to accelerate by its ANP profile. Note that, although there are ways to force these flights to process, this message generally indicates that the desired flight is genuinely beyond the capabilities of the aircraft. This trigger is similar to that for failure message #1, except that in this case the inadequate performance characteristics are first detected through a low acceleration value. This failure only occurs when using user-defined departure profiles that include accelerate-percent procedure steps.

16. Not enough thrust to accelerate & climb for acceleration step; cannot simultaneously achieve minimum longitudinal acceleration of XX g and minimum climb angle of XX deg

This exception occurs when an airplane does not have enough power to simultaneously achieve the minimum longitudinal acceleration of 0.02 g and the minimum climb angle of 0.5 degrees and is required to accelerate by its ANP profile. Note that, although there are ways to force these flights to process, this message generally indicates that the desired flight is genuinely beyond the capabilities of the aircraft. This can happen for flights from high-altitude runways or in low-pressure atmospheres. It can also arise as a result of user-defined departure profiles that include acceleration steps that begin at high altitudes or speeds, or have insufficient thrust settings.

17. Not enough thrust to climb during track segment XX for subtrack XX. Occurred while trying to climb to the Mach transition altitude: XX ft; from a current altitude of XX ft, resulting in a climb angle of XX degrees at a CAS of XX knots. Under defined conditions for this track segment, the max achievable altitude at this track point is XX ft.

This exception is triggered when there is not enough thrust available to climb to an altitude control and satisfy the associated altitude constraint. This message is specific to climbs that obey the BADA speed schedule and cannot reach the BADA Mach transition altitude.

Possible solutions:
- Lower the target altitude to the value specified in the message;
- Extend the track distance between the affected altitude control and the control preceding the affected control to allow the aircraft more distance to achieve the desired altitude;
- Re-assign operations for the affected aircraft type to a different track;
- Change any "At" or "At or above" altitude controls to "At or below"; or
- Use a substitution aircraft.

18. Not enough thrust to climb during track segment XX of subtrack XX. Occurred while trying to climb from start altitude: XX ft, to the target altitude: XX ft, resulting in a climb angle of XX degrees at a CAS of XX knots. Under defined conditions, the max achievable altitude at this track point is XX ft.

This exception is triggered when there is not enough thrust available to climb to an altitude control and satisfy the associated altitude constraint. This message is specific to accelerating climbs, climbs that obey the BADA speed schedule and successfully reach the BADA Mach transition altitude, as well as climbs that obey the BADA speed schedule without crossing the BADA Mach transition altitude.
Possible solutions:

- Lower the target altitude to the value specified in the message;
- Extend the track distance between the affected altitude control and the control preceding the affected control to give the aircraft more distance to achieve the desired altitude;
- Re-assign affected operations to a different track;
- Change any "At" or "At or above" altitude controls to "At or below"; or
- Use a substitution aircraft.

19. **Not enough thrust to maintain altitude of XX ft and speed of XX knots during cruise step.**

This exception is triggered when there is not enough thrust available to maintain level flight to an altitude control while maintaining the BADA speed schedule. This error only occurs for over-flight operations. It occurs in the BADA model where speed cannot be varied.

Possible solutions:

- Lower the altitude control values for level over-flight segments; or
- Re-assign the aircraft in question to a different over-flight track.

20. **Not enough thrust to maintain minimum climb angle of XX deg for climb step**

This exception is triggered when there is not enough thrust available during an ANP climb step to maintain the AEDT minimum climb angle of half a degree. This can happen when altitude controls or user-defined procedures are above a realistic operating altitude for the modeled aircraft, when the modeled atmosphere is at low pressure, or when a flight is based on a high-altitude runway.

21. **Performance result contains undefined (NaN) values for event XX**

This exception is triggered by the presence of a non-numerical value in performance results during validation.

Two common causes for this are:

- Sensor path runway to runway inputs with degenerate geographic coordinates (two or more consecutive sensor path points with the same latitude and longitude).
- Degenerate fixed point profiles (two or more consecutive fixed points with the same distance).

22. **Stage length for distances greater than 11000 nautical miles is undefined**

This message indicates that a request has been made for a stage length corresponding to a distance exceeding 11,000 nautical miles. 11,000 nautical miles is the maximum distance for which standard aircraft flight profiles are defined. This message may occur in the event that a sensor path input represents a distance of more than 11,000 nautical miles.

23. **The altitude control at XX ft is higher than the BADA maximum operating altitude of XX ft.**

 Occurred on segment XX of subtrack XX.
This error message indicates that the BADA model does not allow the aircraft in question to fly to the height of the altitude control.

Possible solutions:
- Lower the affected altitude control to the value specified in the message;
- Re-assign operations for the affected aircraft type to a different track; or
- Use a substitution aircraft.

24. There must be a minimum of one altitude control node above 500 ft AFE.

This type of failure is triggered by flights that have altitude controls (thereby requiring a custom profile), but do not have any altitude controls above 500 ft AFE (the minimum control altitude for custom profiles).

Possible solutions:
- Add an altitude control above 500 ft; or
- Eliminate all altitude controls from the track.

25. Too much thrust for a standard descent; altitude= XX m (MSL), true airspeed= XX mps, mass= XX kg

This exception is triggered when the BADA force balance yields a positive rate of climb for decent steps, i.e. the BADA defined thrust for this segment is such that it is too high to allow a descent.

26. Unable to find an acceptable max attainable altitude on subtrack XX with both convergence and brute-force methods.

This exception is triggered on a small subset of segments where there is not enough thrust available to meet altitude control restraints.

27. Unable to hit target point FAA.AEE.AEDT.FlightPathProcessingModule.FixedPointNIRS from ProcStep[pid=, dist=XX nm, alt=XX ft, spd=XX knots, thr=XX lbf, stepType=XX, thrustType=XX]; required climb angle exceeds maximum climb angle of XX deg

This exception is triggered when the magnitude of the angle required to fly from one “At” altitude control to the next “At” altitude control exceeds 30 degrees.

Possible solutions (using more than one solution will make the operation more likely to succeed):
- If altitude is within 500 ft., adjust the altitude to match attainable altitude;
- Reduce the target altitude;
- Change to “At or below” altitude controls; or
- Move the target further away from the runway.

28. Unable to interpolate between profile points above and below 10k altitude
This exception is triggered by the presence of more than 500 profile points between the beginning of an approach operation and the point where it first drops below 10,000ft with respect to the runway end. Although profile points do not necessarily have a one-to-one correspondence to track controls, this type of flight failure can happen if an approach contains on the order of 500 altitude controls for the en-route descent (and cruise, if included) portion of the flight. Note that this type of failure is not possible for a sensor path runway to runway operation.

29. Weather module returned value(s) outside of allowed range(s); [Invalid pressure value (XX InchHg)]; [Invalid temperature value (XX F)]; [Invalid windspeed value (XX kn)];

This message indicates that in the course of modeling a flight, a weather reading (such as temperature, pressure, or wind) was encountered with a value outside of a normal range of realistic values. Each item in square brackets will only appear if the corresponding weather reading has an invalid value. Note that, since this check for unrealistic weather conditions is performed at the point of communication between AEDT’s performance calculations and its weather modeling software, there is no context available to indicate the reason for the excessively small or large values, and therefore any number of yet unidentified input conditions may trigger this failure.

This exception can be triggered by insufficient altitude control content in the early en-route climb phase. The algorithm that iteratively calculates BADA acceleration calculations is unstable for widely-spaced altitude controls, particularly when the Mach transition altitude lies between the initial and final control altitudes.

If any of the following messages occur, an unexpected problem has occurred within AEDT. Please report this to AEDT technical support.

1. **DESCEND angle must be larger than XX deg**

This exception is triggered when an approach descend procedure step (as defined within a standard procedural profile associated with an aircraft) has a descent angle smaller than the minimum descent angle set by AEDT. Since the custom step creation process verifies that the descent angle is valid, the only way to trigger this mode of failure is through a user-defined profile with a descent angle of less than half a degree.

2. **DESCENT angle must be larger than XX deg**

This exception could be triggered if a custom descent step, created to meet an over-flight altitude control, had a descent angle smaller than the minimum descent angle set by AEDT. Since the custom step creation process verifies that the descent angle is valid, it should not be possible for an AEDT user to trigger this type of failure.
The following exceptions exist as part of data validation that is in place to protect against programming errors and undesirable input data. An AEDT user should not be able to trigger this type of error.

1. `AircraftPerformance.WeatherReading.Validate(IWeather wx)`
2. `APM extension IThrust.ToNoiseThrust() should never be used on a thrust that may have IsOther=true`
3. `APM generated an empty PerformanceEventResult`
4. `at System.DateTime.op_Addition(DateTime d, TimeSpan t)`
5. `Could not generate results for APM input to FPPM`
6. `Custom step from split procedure step evaluated more than once`
7. `Extensions<IDistanceExtensionMethods.Minus(IDistance minuend, IDistance subtrahend)`
8. `Returned value(s) outside of allowed range(s); Invalid pressure value`
9. `Stage length for negative distance is undefined`

The Altitude Control Use Case in AEDT 2a SP2

When defining flight operations using altitude controls in AEDT 2a SP2 it is important to consider general guidelines and the intended use of the altitude control use case to avoid potential modeling issues. While these have not changed between the legacy NIRS tool and AEDT 2a SP2 they are included here as a reminder to former NIRS users and as valuable information to users who may be unfamiliar with the legacy tool.

The altitude control capability was implemented in NIRS and brought forward to AEDT 2a SP2 as a mechanism to allow more accurate modeling of actual flight procedures and airspace constraints than was previously possible using other FAA regulatory environmental modeling tools (see the AEDT 2a Technical Manual, section 3.7.1 for more information). Altitude controls are intended to follow airspace procedure definitions with controls typically separated by thousands of feet in altitude (with the exception of level segments). Altitude controls are not meant to exactly follow high-resolution trajectory data available from aircraft flight position data sources such as radar. Overly dense altitude controls will generally cause aircraft flight performance modeling problems within AEDT 2a SP2. The allowable spacing depends on many factors (quality of trajectory data, quality of aircraft type mapping, atmospheric conditions, control values used i.e. “At”, “At or Above”, or “At or Below”, etc.) and strict limits are not defined. It is however important to understand that the closer a pair of altitude controls are to each other geographically, the more likely it is for differences between the input data and the model’s flight performance constraints to prevent the altitude controls from being met.

Therefore while radar data is often a primary source of information used for defining altitude control geographic locations and altitude values it should not be used directly. The radar data should be processed and filtered to create a set of altitude controls that match the general characteristics of the trajectories observed by radar data without including every available data point.

AEDT 2a SP2 includes a use case that was not available in NIRS which allows users to define flight operations using high resolution trajectory data. Such flight operations are referred to as sensor path operations in AEDT 2a SP2. Sensor path operations can be created by directly importing high resolution trajectories from sources such as radar without the risk of a high number of flight performance errors. AEDT 2a SP2 processes sensor path flight operations by first smoothing and filtering the trajectory data. Then, the resultant trajectory is determined according to the performance limits defined by its
underlying flight performance models (see the AEDT2a Technical Manual, section 3.7.2 for more information). Unlike the altitude control use case, the inability to exactly match a point from a user’s input trajectory data will not cause an error that prevents the flight from being calculated. Users should compare resultant trajectory to input trajectory data because as currently implemented in AEDT2a SP2, there is no limit to which the resultant flight trajectory can differ from the input trajectory. No notification is provided to the user regarding the extent of the differences between the input and output trajectories. The sensor path capability is supported for complete runway-to-runway trajectories in AEDT 2a SP2.